Tailoring Adversarial Attacks on Deep Neural Networks for Targeted Class Manipulation Using DeepFool Algorithm

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Aug 30, 2024), p. n/a
Autor principal: S M Fazle Rabby Labib
Otros Autores: Mondal, Joyanta Jyoti, Meem Arafat Manab, Newaz, Sarfaraz, Xiao, Xi
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2880592903
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2880592903 
045 0 |b d20240830 
100 1 |a S M Fazle Rabby Labib 
245 1 |a Tailoring Adversarial Attacks on Deep Neural Networks for Targeted Class Manipulation Using DeepFool Algorithm 
260 |b Cornell University Library, arXiv.org  |c Aug 30, 2024 
513 |a Working Paper 
520 3 |a The susceptibility of deep neural networks (DNNs) to adversarial attacks undermines their reliability across numerous applications, underscoring the necessity for an in-depth exploration of these vulnerabilities and the formulation of robust defense strategies. The DeepFool algorithm by Moosavi-Dezfooli et al. (2016) represents a pivotal step in identifying minimal perturbations required to induce misclassification of input images. Nonetheless, its generic methodology falls short in scenarios necessitating targeted interventions. Additionally, previous research studies have predominantly concentrated on the success rate of attacks without adequately addressing the consequential distortion of images, the maintenance of image quality, or the confidence threshold required for misclassification. To bridge these gaps, we introduce the Enhanced Targeted DeepFool (ET DeepFool) algorithm, an evolution of DeepFool that not only facilitates the specification of desired misclassification targets but also incorporates a configurable minimum confidence score. Our empirical investigations demonstrate the superiority of this refined approach in maintaining the integrity of images and minimizing perturbations across a variety of DNN architectures. Unlike previous iterations, such as the Targeted DeepFool by Gajjar et al. (2022), our method grants unparalleled control over the perturbation process, enabling precise manipulation of model responses. Preliminary outcomes reveal that certain models, including AlexNet and the advanced Vision Transformer, display commendable robustness to such manipulations. This discovery of varying levels of model robustness, as unveiled through our confidence level adjustments, could have far-reaching implications for the field of image recognition. Our code will be made public upon acceptance of the paper. 
653 |a Algorithms 
653 |a Image quality 
653 |a Integrity 
653 |a Confidence intervals 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Perturbation 
700 1 |a Mondal, Joyanta Jyoti 
700 1 |a Meem Arafat Manab 
700 1 |a Newaz, Sarfaraz 
700 1 |a Xiao, Xi 
773 0 |t arXiv.org  |g (Aug 30, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2880592903/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2310.13019