Protecting Publicly Available Data With Machine Learning Shortcuts

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Oct 30, 2023), p. n/a
Autor principal: Müller, Nicolas M
Otros Autores: Burgert, Maximilian, Debus, Pascal, Williams, Jennifer, Sperl, Philip, Böttinger, Konstantin
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2884477536
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2884477536 
045 0 |b d20231030 
100 1 |a Müller, Nicolas M 
245 1 |a Protecting Publicly Available Data With Machine Learning Shortcuts 
260 |b Cornell University Library, arXiv.org  |c Oct 30, 2023 
513 |a Working Paper 
520 3 |a Machine-learning (ML) shortcuts or spurious correlations are artifacts in datasets that lead to very good training and test performance but severely limit the model's generalization capability. Such shortcuts are insidious because they go unnoticed due to good in-domain test performance. In this paper, we explore the influence of different shortcuts and show that even simple shortcuts are difficult to detect by explainable AI methods. We then exploit this fact and design an approach to defend online databases against crawlers: providers such as dating platforms, clothing manufacturers, or used car dealers have to deal with a professionalized crawling industry that grabs and resells data points on a large scale. We show that a deterrent can be created by deliberately adding ML shortcuts. Such augmented datasets are then unusable for ML use cases, which deters crawlers and the unauthorized use of data from the internet. Using real-world data from three use cases, we show that the proposed approach renders such collected data unusable, while the shortcut is at the same time difficult to notice in human perception. Thus, our proposed approach can serve as a proactive protection against illegitimate data crawling. 
653 |a Data augmentation 
653 |a Datasets 
653 |a Machine learning 
653 |a Data collection 
653 |a Data points 
700 1 |a Burgert, Maximilian 
700 1 |a Debus, Pascal 
700 1 |a Williams, Jennifer 
700 1 |a Sperl, Philip 
700 1 |a Böttinger, Konstantin 
773 0 |t arXiv.org  |g (Oct 30, 2023), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2884477536/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2310.19381