Minimum Cost Flow-Based Integrated Model for Electric Vehicle and Crew Scheduling

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Advanced Transportation vol. 2023 (2023)
Autor principal: Shen, Yindong
Otros Autores: Li, Yuanyuan
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2889074859
003 UK-CbPIL
022 |a 0197-6729 
022 |a 2042-3195 
022 |a 0018-1501 
024 7 |a 10.1155/2023/6658030  |2 doi 
035 |a 2889074859 
045 2 |b d20230101  |b d20231231 
084 |a 164028  |2 nlm 
100 1 |a Shen, Yindong  |u School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China 
245 1 |a Minimum Cost Flow-Based Integrated Model for Electric Vehicle and Crew Scheduling 
260 |b John Wiley & Sons, Inc.  |c 2023 
513 |a Journal Article 
520 3 |a Vehicle and crew scheduling is vital in public transit planning. Conventionally, the issues are handled sequentially as the vehicle scheduling problem (VSP) and crew scheduling problem (CSP). However, integrating these planning steps offers additional flexibility, resulting in improved efficiency compared with sequential planning. Given the ever-growing market share of electric buses, this paper introduces a new model for integrated electric VSP and CSP, called EVCSPM. This model employs the minimum cost flow formulations for electric VSP, set partitioning for CSP, and linking constraints. Due to the nonlinear integer property of EVCSPM, we propose a method that hybrids a matching-based heuristic and integer linear programming solver, GUROBI. The numerical results demonstrate the efficiency of our methodology, and the integrated model outperforms the sequential model in real-life scenarios. 
653 |a Schedules 
653 |a Scheduling 
653 |a Electric vehicles 
653 |a Linear programming 
653 |a Public transportation 
653 |a Hybrids 
653 |a Integer programming 
653 |a Decomposition 
653 |a Transportation planning 
653 |a Algorithms 
653 |a Heuristic 
653 |a Energy consumption 
653 |a Minimum cost 
653 |a Economic 
700 1 |a Li, Yuanyuan  |u School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control, Huazhong University of Science and Technology, Ministry of Education, Wuhan, China 
773 0 |t Journal of Advanced Transportation  |g vol. 2023 (2023) 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2889074859/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2889074859/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2889074859/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch