Career Modeling with Missing Data and Traces

Zapisane w:
Opis bibliograficzny
Wydane w:arXiv.org (Dec 2, 2024), p. n/a
1. autor: Voldoire, Théo
Kolejni autorzy: Ryder, Robin J, Ryan Lahfa
Wydane:
Cornell University Library, arXiv.org
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full text outside of ProQuest
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 2894587791
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2894587791 
045 0 |b d20241202 
100 1 |a Voldoire, Théo 
245 1 |a Career Modeling with Missing Data and Traces 
260 |b Cornell University Library, arXiv.org  |c Dec 2, 2024 
513 |a Working Paper 
520 3 |a Many social scientists study the career trajectories of populations of interest, such as economic and administrative elites. However, data to document such processes are rarely completely available, which motivates the adoption of inference tools that can account for large numbers of missing values. Taking the example of public-private paths of elite civil servants in France, we introduce binary Markov switching models to perform Bayesian data augmentation. Our procedure relies on two data sources: (1) detailed observations of a small number of individual trajectories, and (2) less informative ``traces'' left by all individuals, which we model for imputation of missing data. An advantage of this model class is that it maintains the properties of hidden Markov models and enables a tailored sampler to target the posterior, while allowing for varying parameters across individuals and time. We provide two applied studies which demonstrate this can be used to properly test substantive hypotheses, and expand the social scientific literature in various ways. We notably show that the rate at which ENA graduates exit the French public sector has not increased since 1990, but that the rate at which they come back has increased. 
653 |a Missing data 
653 |a Data augmentation 
653 |a Homogeneity 
653 |a Markov chains 
653 |a Bayesian analysis 
653 |a Digital data 
700 1 |a Ryder, Robin J 
700 1 |a Ryan Lahfa 
773 0 |t arXiv.org  |g (Dec 2, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2894587791/abstract/embedded/ITVB7CEANHELVZIZ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2311.15257