The HR-Calculus: Enabling Information Processing with Quaternion Algebra

Gardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Oct 26, 2024), p. n/a
Autor Principal: Mandic, Danilo P
Outros autores: Talebi, Sayed Pouria, Took, Clive Cheong, Xia, Yili, Xu, Dongpo, Xiang, Min, Bourigault, Pauline
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en liña:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 2895039440
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2895039440 
045 0 |b d20241026 
100 1 |a Mandic, Danilo P 
245 1 |a The HR-Calculus: Enabling Information Processing with Quaternion Algebra 
260 |b Cornell University Library, arXiv.org  |c Oct 26, 2024 
513 |a Working Paper 
520 3 |a From their inception, quaternions and their division algebra have proven to be advantageous in modelling rotation/orientation in three-dimensional spaces and have seen use from the initial formulation of electromagnetic filed theory through to forming the basis of quantum filed theory. Despite their impressive versatility in modelling real-world phenomena, adaptive information processing techniques specifically designed for quaternion-valued signals have only recently come to the attention of the machine learning, signal processing, and control communities. The most important development in this direction is introduction of the HR-calculus, which provides the required mathematical foundation for deriving adaptive information processing techniques directly in the quaternion domain. In this article, the foundations of the HR-calculus are revised and the required tools for deriving adaptive learning techniques suitable for dealing with quaternion-valued signals, such as the gradient operator, chain and product derivative rules, and Taylor series expansion are presented. This serves to establish the most important applications of adaptive information processing in the quaternion domain for both single-node and multi-node formulations. The article is supported by Supplementary Material, which will be referred to as SM. 
653 |a Calculus 
653 |a Information processing 
653 |a Data processing 
653 |a Mathematical analysis 
653 |a Series expansion 
653 |a Signal processing 
653 |a Taylor series 
653 |a Machine learning 
653 |a Operators (mathematics) 
653 |a Domains 
653 |a Modelling 
653 |a Quaternions 
653 |a Adaptive learning 
700 1 |a Talebi, Sayed Pouria 
700 1 |a Took, Clive Cheong 
700 1 |a Xia, Yili 
700 1 |a Xu, Dongpo 
700 1 |a Xiang, Min 
700 1 |a Bourigault, Pauline 
773 0 |t arXiv.org  |g (Oct 26, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2895039440/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2311.16771