Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding

Saved in:
Bibliographic Details
Published in:arXiv.org (Nov 28, 2023), p. n/a
Main Author: Leng, Sicong
Other Authors: Zhang, Hang, Chen, Guanzheng, Li, Xin, Lu, Shijian, Miao, Chunyan, Bing, Lidong
Published:
Cornell University Library, arXiv.org
Subjects:
Online Access:Citation/Abstract
Full text outside of ProQuest
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nab a2200000uu 4500
001 2895042811
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2895042811 
045 0 |b d20231128 
100 1 |a Leng, Sicong 
245 1 |a Mitigating Object Hallucinations in Large Vision-Language Models through Visual Contrastive Decoding 
260 |b Cornell University Library, arXiv.org  |c Nov 28, 2023 
513 |a Working Paper 
520 3 |a Large Vision-Language Models (LVLMs) have advanced considerably, intertwining visual recognition and language understanding to generate content that is not only coherent but also contextually attuned. Despite their success, LVLMs still suffer from the issue of object hallucinations, where models generate plausible yet incorrect outputs that include objects that do not exist in the images. To mitigate this issue, we introduce Visual Contrastive Decoding (VCD), a simple and training-free method that contrasts output distributions derived from original and distorted visual inputs. The proposed VCD effectively reduces the over-reliance on statistical bias and unimodal priors, two essential causes of object hallucinations. This adjustment ensures the generated content is closely grounded to visual inputs, resulting in contextually accurate outputs. Our experiments show that VCD, without either additional training or the usage of external tools, significantly mitigates the object hallucination issue across different LVLM families. Beyond mitigating object hallucinations, VCD also excels in general LVLM benchmarks, highlighting its wide-ranging applicability. 
653 |a Hallucinations 
653 |a Vision 
653 |a Training 
700 1 |a Zhang, Hang 
700 1 |a Chen, Guanzheng 
700 1 |a Li, Xin 
700 1 |a Lu, Shijian 
700 1 |a Miao, Chunyan 
700 1 |a Bing, Lidong 
773 0 |t arXiv.org  |g (Nov 28, 2023), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2895042811/abstract/embedded/NVC8TPT9VN4WFQEG?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2311.16922