Detecting and Corrupting Convolution-based Unlearnable Examples

Guardado en:
Bibliografiske detaljer
Udgivet i:arXiv.org (Dec 10, 2024), p. n/a
Hovedforfatter: Li, Minghui
Andre forfattere: Wang, Xianlong, Yu, Zhifei, Hu, Shengshan, Zhou, Ziqi, Zhang, Longling, Leo Yu Zhang
Udgivet:
Cornell University Library, arXiv.org
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 2896050796
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2896050796 
045 0 |b d20241210 
100 1 |a Li, Minghui 
245 1 |a Detecting and Corrupting Convolution-based Unlearnable Examples 
260 |b Cornell University Library, arXiv.org  |c Dec 10, 2024 
513 |a Working Paper 
520 3 |a Convolution-based unlearnable examples (UEs) employ class-wise multiplicative convolutional noise to training samples, severely compromising model performance. This fire-new type of UEs have successfully countered all defense mechanisms against UEs. The failure of such defenses can be attributed to the absence of norm constraints on convolutional noise, leading to severe blurring of image features. To address this, we first design an Edge Pixel-based Detector (EPD) to identify convolution-based UEs. Upon detection of them, we propose the first defense scheme against convolution-based UEs, COrrupting these samples via random matrix multiplication by employing bilinear INterpolation (COIN) such that disrupting the distribution of class-wise multiplicative noise. To evaluate the generalization of our proposed COIN, we newly design two convolution-based UEs called VUDA and HUDA to expand the scope of convolution-based UEs. Extensive experiments demonstrate the effectiveness of detection scheme EPD and that our defense COIN outperforms 11 state-of-the-art (SOTA) defenses, achieving a significant improvement on the CIFAR and ImageNet datasets. 
653 |a Datasets 
653 |a Image compression 
653 |a Pixels 
653 |a Convolution 
653 |a Interpolation 
653 |a Training 
700 1 |a Wang, Xianlong 
700 1 |a Yu, Zhifei 
700 1 |a Hu, Shengshan 
700 1 |a Zhou, Ziqi 
700 1 |a Zhang, Longling 
700 1 |a Leo Yu Zhang 
773 0 |t arXiv.org  |g (Dec 10, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2896050796/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2311.18403