Leveraging Large Language Models to Improve REST API Testing

Guardado en:
Bibliografiske detaljer
Udgivet i:arXiv.org (Jan 30, 2024), p. n/a
Hovedforfatter: Kim, Myeongsoo
Andre forfattere: Stennett, Tyler, Shah, Dhruv, Sinha, Saurabh, Orso, Alessandro
Udgivet:
Cornell University Library, arXiv.org
Fag:
Online adgang:Citation/Abstract
Full text outside of ProQuest
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 2898152805
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2898152805 
045 0 |b d20240130 
100 1 |a Kim, Myeongsoo 
245 1 |a Leveraging Large Language Models to Improve REST API Testing 
260 |b Cornell University Library, arXiv.org  |c Jan 30, 2024 
513 |a Working Paper 
520 3 |a The widespread adoption of REST APIs, coupled with their growing complexity and size, has led to the need for automated REST API testing tools. Current tools focus on the structured data in REST API specifications but often neglect valuable insights available in unstructured natural-language descriptions in the specifications, which leads to suboptimal test coverage. Recently, to address this gap, researchers have developed techniques that extract rules from these human-readable descriptions and query knowledge bases to derive meaningful input values. However, these techniques are limited in the types of rules they can extract and prone to produce inaccurate results. This paper presents RESTGPT, an innovative approach that leverages the power and intrinsic context-awareness of Large Language Models (LLMs) to improve REST API testing. RESTGPT takes as input an API specification, extracts machine-interpretable rules, and generates example parameter values from natural-language descriptions in the specification. It then augments the original specification with these rules and values. Our evaluations indicate that RESTGPT outperforms existing techniques in both rule extraction and value generation. Given these promising results, we outline future research directions for advancing REST API testing through LLMs. 
653 |a Structured data 
653 |a Application programming interface 
653 |a Descriptions 
653 |a Knowledge bases (artificial intelligence) 
653 |a Large language models 
653 |a Specifications 
700 1 |a Stennett, Tyler 
700 1 |a Shah, Dhruv 
700 1 |a Sinha, Saurabh 
700 1 |a Orso, Alessandro 
773 0 |t arXiv.org  |g (Jan 30, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2898152805/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2312.00894