State of Health Estimation for Battery Modules with Parallel-Connected Cells Under Cell-to-Cell Variations

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (May 19, 2024), p. n/a
Autor principal: Zhou, Qinan
Otros Autores: Anderson, Dyche, Sun, Jing
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2899315747
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2899315747 
045 0 |b d20240519 
100 1 |a Zhou, Qinan 
245 1 |a State of Health Estimation for Battery Modules with Parallel-Connected Cells Under Cell-to-Cell Variations 
260 |b Cornell University Library, arXiv.org  |c May 19, 2024 
513 |a Working Paper 
520 3 |a State of health (SOH) estimation for lithium-ion battery modules with cells connected in parallel is a challenging problem, especially with cell-to-cell variations. Incremental capacity analysis (ICA) and differential voltage analysis (DVA) are effective at the cell level, but a generalizable method to extend them to module-level SOH estimation remains missing, when only module-level measurements are available. This paper proposes a new method and demonstrates that, with multiple features systematically selected from the module-level ICA and DVA, the module-level SOH can be estimated with high accuracy and confidence in the presence of cell-to-cell variations. First, an information theory-based feature selection algorithm is proposed to find an optimal set of features for module-level SOH estimation. Second, a relevance vector regression (RVR)-based module-level SOH estimation model is proposed to provide both point estimates and three-sigma credible intervals while maintaining model sparsity. With more selected features incorporated, the proposed method achieves better estimation accuracy and higher confidence at the expense of higher model complexity. When applied to a large experimental dataset, the proposed method and the resulting sparse model lead to module-level SOH estimates with a 0.5% root-mean-square error and a 1.5% average three-sigma value. With all the training processes completed offboard, the proposed method has low computational complexity for onboard implementations. 
653 |a Estimates 
653 |a Accuracy 
653 |a Lithium-ion batteries 
653 |a Datasets 
653 |a Algorithms 
653 |a Modules 
653 |a Complexity 
653 |a Information theory 
653 |a Parallel connected 
653 |a Rechargeable batteries 
700 1 |a Anderson, Dyche 
700 1 |a Sun, Jing 
773 0 |t arXiv.org  |g (May 19, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2899315747/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2312.03097