Towards Efficient Quantum Anomaly Detection: One-Class SVMs using Variable Subsampling and Randomized Measurements

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 14, 2023), p. n/a
Autor principal: Kölle, Michael
Altres autors: Ahouzi, Afrae, Debus, Pascal, Müller, Robert, Schuman, Danielle, Linnhoff-Popien, Claudia
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2902167864
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2902167864 
045 0 |b d20231214 
100 1 |a Kölle, Michael 
245 1 |a Towards Efficient Quantum Anomaly Detection: One-Class SVMs using Variable Subsampling and Randomized Measurements 
260 |b Cornell University Library, arXiv.org  |c Dec 14, 2023 
513 |a Working Paper 
520 3 |a Quantum computing, with its potential to enhance various machine learning tasks, allows significant advancements in kernel calculation and model precision. Utilizing the one-class Support Vector Machine alongside a quantum kernel, known for its classically challenging representational capacity, notable improvements in average precision compared to classical counterparts were observed in previous studies. Conventional calculations of these kernels, however, present a quadratic time complexity concerning data size, posing challenges in practical applications. To mitigate this, we explore two distinct approaches: utilizing randomized measurements to evaluate the quantum kernel and implementing the variable subsampling ensemble method, both targeting linear time complexity. Experimental results demonstrate a substantial reduction in training and inference times by up to 95\% and 25\% respectively, employing these methods. Although unstable, the average precision of randomized measurements discernibly surpasses that of the classical Radial Basis Function kernel, suggesting a promising direction for further research in scalable, efficient quantum computing applications in machine learning. 
653 |a Machine learning 
653 |a Quantum computing 
653 |a Radial basis function 
653 |a Complexity 
653 |a Anomalies 
653 |a Support vector machines 
653 |a Kernel functions 
653 |a Cognitive tasks 
700 1 |a Ahouzi, Afrae 
700 1 |a Debus, Pascal 
700 1 |a Müller, Robert 
700 1 |a Schuman, Danielle 
700 1 |a Linnhoff-Popien, Claudia 
773 0 |t arXiv.org  |g (Dec 14, 2023), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2902167864/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2312.09174