Distributed Query Plan Generation using Cuckoo Search Algorithm

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:International Journal of Energy Optimization and Engineering vol. 6, no. 1 (2017), p. 86
Հիմնական հեղինակ: Yadav, Monika
Այլ հեղինակներ: Kumar, T
Հրապարակվել է:
IGI Global
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full Text - PDF
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 2904458467
003 UK-CbPIL
022 |a 2160-9500 
022 |a 2160-9543 
024 7 |a 10.4018/IJEOE.2017010105  |2 doi 
035 |a 2904458467 
045 2 |b d20170101  |b d20171231 
100 1 |a Yadav, Monika  |u School of Computer and Systems Science, Jawaharlal Nehru University, New Delhi, India 
245 1 |a Distributed Query Plan Generation using Cuckoo Search Algorithm 
260 |b IGI Global  |c 2017 
513 |a Journal Article 
520 3 |a Query processing in distributed databases involves data transmission amongst sites capable of providing answers to a distributed query. For this, a distributed query processing strategy, which generates efficient query processing plans for a given distributed query, needs to be devised. Since in distributed databases, the data is fragmented and replicated at multiple sites, the number of query plans increases exponentially with increase in the number of sites capable of providing answers to a distributed query. As a result, generating efficient query processing plans, from amongst all possible query plans, becomes a complex problem. This distributed query plan generation (DQPG) problem has been addressed using the Cuckoo Search Algorithm (CSA) in this paper. Accordingly, a CSA based DQPG algorithm (DQPGCSA) that aims to generate Top-K query plans having minimum cost of processing a distributed query has been proposed. Experimental based comparison of DQPGCSA with the existing GA based DQPG algorithm shows that the former is able to generate Top-K query plans that have a comparatively lower query processing cost. This, in turn, reduces the query response time resulting in efficient decision making. 
653 |a Search algorithms 
653 |a Data transmission 
653 |a Algorithms 
653 |a Queries 
653 |a Databases 
653 |a Query processing 
653 |a Minimum cost 
653 |a Response time (computers) 
653 |a Environmental 
700 1 |a Kumar, T  |u School of Computer and Systems Science, Jawaharlal Nehru University, New Delhi, India 
773 0 |t International Journal of Energy Optimization and Engineering  |g vol. 6, no. 1 (2017), p. 86 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2904458467/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2904458467/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch