Spatiotemporal Analysis and Prediction of Carbon Emissions from Energy Consumption in China through Nighttime Light Remote Sensing

保存先:
書誌詳細
出版年:Remote Sensing vol. 16, no. 1 (2024), p. 23
第一著者: Zhang, Zhaoxu
その他の著者: Fu, Shihong, Li, Jiayi, Qiu, Yuchen, Shi, Zhenwei, Sun, Yuanheng
出版事項:
MDPI AG
主題:
オンライン・アクセス:Citation/Abstract
Full Text + Graphics
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 2912802037
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs16010023  |2 doi 
035 |a 2912802037 
045 2 |b d20240101  |b d20241231 
084 |a 231556  |2 nlm 
100 1 |a Zhang, Zhaoxu  |u School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; <email>zhangzhaoxu@tiangong.edu.cn</email> (Z.Z.); <email>2113620105@tiangong.edu.cn</email> (S.F.); <email>2213620136@tiangong.edu.cn</email> (J.L.); ; The Eighth Geological Brigade, Hebei Bureau of Geology and Mineral Resources Exploration, Qinhuangdao 066000, China; Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao 066000, China 
245 1 |a Spatiotemporal Analysis and Prediction of Carbon Emissions from Energy Consumption in China through Nighttime Light Remote Sensing 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a With burgeoning economic development, a surging influx of greenhouse gases, notably carbon dioxide (CO2), has precipitated global warming, thus accentuating the critical imperatives of monitoring and predicting carbon emissions. Conventional approaches employed in the examination of carbon emissions predominantly rely on energy statistics procured from the National Bureau of Statistics and local statistical bureaus. However, these conventional data sources, often encapsulated in statistical yearbooks, exclusively furnish insights into energy consumption at the national and provincial levels, so the assessment at a more granular scale, such as the municipal and county levels, poses a formidable challenge. This study, using nighttime light data and statistics records spanning from 2000 to 2019, undertook a comparative analysis, scrutinizing various modeling methodologies, encompassing linear, exponential, and logarithmic models, with the aim of assessing carbon emissions across diverse spatial scales. A multifaceted analysis unfolded, delving into the key attributes of China’s carbon emissions, spanning total carbon emissions, per capita carbon emissions, and carbon emission intensity. Spatial considerations were also paramount, encompassing an examination of carbon emissions across provincial, municipal, and county scales, as well as an intricate exploration of spatial patterns, including the displacement of the center of gravity and the application of trend analyses. These multifaceted analyses collectively contributed to the endeavor of predicting China’s future carbon emission trajectory. The findings of the study revealed that at the national scale, total carbon emissions exhibited an annual increment throughout the period spanning 2000 to 2019. Secondly, upon an in-depth evaluation of model fitting, it was evident that the logarithmic model emerged as the most adept in terms of fitting, presenting a mean R2 value of 0.83. Thirdly, the gravity center of carbon emissions in China was situated within Henan Province, and there was a discernible overall shift towards the southwest. In 2025 and 2030, it is anticipated that the average quantum of China’s carbon emissions will reach 7.82 × 102 million and 25.61 × 102 million metric tons, with Shandong Province emerging as the foremost contributor. In summary, this research serves as a robust factual underpinning and an indispensable reference point for advancing the scientific underpinnings of China’s transition to a low-carbon economy and the judicious formulation of policies governing carbon emissions. 
651 4 |a Macao 
651 4 |a Hong Kong China 
651 4 |a China 
651 4 |a Tibet 
651 4 |a Taiwan 
653 |a Logarithms 
653 |a Global warming 
653 |a Datasets 
653 |a Greenhouse gases 
653 |a 21st century 
653 |a Carbon dioxide 
653 |a Energy resources 
653 |a Energy consumption 
653 |a Radiation 
653 |a Climate change 
653 |a Center of gravity 
653 |a Pollution monitoring 
653 |a Remote sensing 
653 |a Fourier transforms 
653 |a Greenhouse effect 
653 |a Carbon 
653 |a Economic development 
653 |a Emissions 
653 |a Statistics 
653 |a Research 
653 |a Volatile organic compounds--VOCs 
653 |a Spatial analysis 
653 |a Comparative analysis 
653 |a Emission analysis 
653 |a Data processing 
653 |a Outdoor air quality 
653 |a Statistical analysis 
653 |a Environmental quality 
653 |a Spectrum analysis 
653 |a Sustainable development 
653 |a Nighttime 
653 |a Night 
653 |a Light 
653 |a Satellites 
653 |a Nitrogen dioxide 
653 |a Cities 
700 1 |a Fu, Shihong  |u School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; <email>zhangzhaoxu@tiangong.edu.cn</email> (Z.Z.); <email>2113620105@tiangong.edu.cn</email> (S.F.); <email>2213620136@tiangong.edu.cn</email> (J.L.); 
700 1 |a Li, Jiayi  |u School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; <email>zhangzhaoxu@tiangong.edu.cn</email> (Z.Z.); <email>2113620105@tiangong.edu.cn</email> (S.F.); <email>2213620136@tiangong.edu.cn</email> (J.L.); 
700 1 |a Qiu, Yuchen  |u School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; <email>zhangzhaoxu@tiangong.edu.cn</email> (Z.Z.); <email>2113620105@tiangong.edu.cn</email> (S.F.); <email>2213620136@tiangong.edu.cn</email> (J.L.); 
700 1 |a Shi, Zhenwei  |u Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China; <email>shizw@aircas.ac.cn</email> 
700 1 |a Sun, Yuanheng  |u Environmental Information Institute, Navigation College, Dalian Maritime University, Dalian 116026, China 
773 0 |t Remote Sensing  |g vol. 16, no. 1 (2024), p. 23 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2912802037/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2912802037/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2912802037/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch