In-situ prediction of machining errors of thin-walled parts: an engineering knowledge based sparse Bayesian learning approach

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Intelligent Manufacturing vol. 35, no. 1 (Jan 2024), p. 387
Autor principal: Sun, Hao
Otros Autores: Zhao, Shengqiang, Peng, Fangyu, Yan, Rong, Zhou, Lin, Zhang, Teng, Zhang, Chi
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2914341089
003 UK-CbPIL
022 |a 0956-5515 
022 |a 1572-8145 
024 7 |a 10.1007/s10845-022-02044-6  |2 doi 
035 |a 2914341089 
045 2 |b d20240101  |b d20240131 
084 |a 53474  |2 nlm 
100 1 |a Sun, Hao  |u Huazhong University of Science and Technology, National NC System Engineering Research Center, School of Mechanical Science and Engineering, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
245 1 |a In-situ prediction of machining errors of thin-walled parts: an engineering knowledge based sparse Bayesian learning approach 
260 |b Springer Nature B.V.  |c Jan 2024 
513 |a Journal Article 
520 3 |a Thin-walled parts such as blades are widely used in aerospace field, and their machining quality directly affects the service performance of core components. Due to obvious time-varying nonlinear effect and complex machining system, it is a great challenge to realize accurate and fast prediction of machining errors of such parts. To solve the above problems, an engineering knowledge based sparse Bayesian learning approach is proposed to realize in-situ prediction of machining errors of thin-walled blades. Firstly, an engineering knowledge based strategy is proposed to improve the generalization ability of the model by integrating multi-source engineering knowledge, including machining information, physical information and online monitoring information. Then, principal component analysis method is utilized for the dimensional reduction of features. Sparse Bayesian learning approach is developed for model training, which significantly reduce the complexity of the regression model. Finally, the superiority and effectiveness of the proposed approach have been proven in blade milling experiments. Experimental results show that the average deviation of the proposed in-situ prediction model is about 11 μm, and the model complexity is reduced by 66%. 
653 |a Knowledge based engineering 
653 |a Engineering 
653 |a Errors 
653 |a Complexity 
653 |a Bayesian analysis 
653 |a Principal components analysis 
653 |a Machine learning 
653 |a Prediction models 
653 |a Regression models 
653 |a Milling (machining) 
653 |a Blades 
653 |a Manufacturing 
653 |a Advanced manufacturing technologies 
653 |a Environmental 
700 1 |a Zhao, Shengqiang  |u Huazhong University of Science and Technology, National NC System Engineering Research Center, School of Mechanical Science and Engineering, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
700 1 |a Peng, Fangyu  |u Huazhong University of Science and Technology, State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
700 1 |a Yan, Rong  |u Huazhong University of Science and Technology, National NC System Engineering Research Center, School of Mechanical Science and Engineering, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
700 1 |a Zhou, Lin  |u Wuhan Digital Design and Manufacturing Innovation Center Co. Ltd, China, Wuhan, China (GRID:grid.33199.31) 
700 1 |a Zhang, Teng  |u Huazhong University of Science and Technology, National NC System Engineering Research Center, School of Mechanical Science and Engineering, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
700 1 |a Zhang, Chi  |u Huazhong University of Science and Technology, National NC System Engineering Research Center, School of Mechanical Science and Engineering, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223) 
773 0 |t Journal of Intelligent Manufacturing  |g vol. 35, no. 1 (Jan 2024), p. 387 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2914341089/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2914341089/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch