Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming
Збережено в:
| Опубліковано в:: | Journal of Optimization Theory and Applications vol. 200, no. 1 (Jan 2024), p. 1 |
|---|---|
| Автор: | |
| Інші автори: | , , , |
| Опубліковано: |
Springer Nature B.V.
|
| Предмети: | |
| Онлайн доступ: | Citation/Abstract Full Text - PDF |
| Теги: |
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Короткий огляд: | Nonlinear symmetric cone programming (NSCP) generalizes important optimization problems such as nonlinear programming, nonlinear semi-definite programming and nonlinear second-order cone programming (NSOCP). In this work, we present two new optimality conditions for NSCP without constraint qualifications, which implies the Karush–Kuhn–Tucker conditions under a condition weaker than Robinson’s constraint qualification. In addition, we show the relationship of both optimality conditions in the context of NSOCP, where we also present an augmented Lagrangian method with global convergence to a KKT point under a condition weaker than Robinson’s constraint qualification. |
|---|---|
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-023-02338-6 |
| Джерело: | ABI/INFORM Global |