Thresholds for the distributed surface code in the presence of memory decoherence

Zapisane w:
Opis bibliograficzny
Wydane w:arXiv.org (May 18, 2024), p. n/a
1. autor: de Bone, Sébastian
Kolejni autorzy: Möller, Paul, Bradley, Conor E, Taminiau, Tim H, Elkouss, David
Wydane:
Cornell University Library, arXiv.org
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full text outside of ProQuest
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 2917407392
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1116/5.0200190  |2 doi 
035 |a 2917407392 
045 0 |b d20240518 
100 1 |a de Bone, Sébastian 
245 1 |a Thresholds for the distributed surface code in the presence of memory decoherence 
260 |b Cornell University Library, arXiv.org  |c May 18, 2024 
513 |a Working Paper 
520 3 |a In the search for scalable, fault-tolerant quantum computing, distributed quantum computers are promising candidates. These systems can be realized in large-scale quantum networks or condensed onto a single chip with closely situated nodes. We present a framework for numerical simulations of a memory channel using the distributed toric surface code, where each data qubit of the code is part of a separate node, and the error-detection performance depends on the quality of four-qubit Greenberger-Horne-Zeilinger (GHZ) states generated between the nodes. We quantitatively investigate the effect of memory decoherence and evaluate the advantage of GHZ creation protocols tailored to the level of decoherence. We do this by applying our framework for the particular case of color centers in diamond, employing models developed from experimental characterization of nitrogen-vacancy centers. For diamond color centers, coherence times during entanglement generation are orders of magnitude lower than coherence times of idling qubits. These coherence times represent a limiting factor for applications, but previous surface code simulations did not treat them as such. Introducing limiting coherence times as a prominent noise factor makes it imperative to integrate realistic operation times into simulations and incorporate strategies for operation scheduling. Our model predicts error probability thresholds for gate and measurement reduced by at least a factor of three compared to prior work with more idealized noise models. We also find a threshold of \(4\cdot10^2\) in the ratio between the entanglement generation and the decoherence rates, setting a benchmark for experimental progress. 
653 |a Thresholds 
653 |a Simulation 
653 |a Quantum computing 
653 |a Quantum entanglement 
653 |a Limiting factors 
653 |a Quantum computers 
653 |a Diamonds 
653 |a Fault tolerance 
653 |a Nodes 
653 |a Noise factor 
653 |a Mathematical models 
653 |a Error analysis 
653 |a Operation scheduling 
653 |a Distributed memory 
653 |a Error detection 
653 |a Coherence 
653 |a Qubits (quantum computing) 
653 |a Color centers 
700 1 |a Möller, Paul 
700 1 |a Bradley, Conor E 
700 1 |a Taminiau, Tim H 
700 1 |a Elkouss, David 
773 0 |t arXiv.org  |g (May 18, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2917407392/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2401.10770