Cyber threat assessment and management for securing healthcare ecosystems using natural language processing

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Information Security vol. 23, no. 1 (Feb 2024), p. 31
Autor principal: Silvestri, Stefano
Otros Autores: Islam, Shareful, Amelin, Dmitry, Weiler, Gabriele, Papastergiou, Spyridon, Ciampi, Mario
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2917414650
003 UK-CbPIL
022 |a 1615-5262 
022 |a 1615-5270 
024 7 |a 10.1007/s10207-023-00769-w  |2 doi 
035 |a 2917414650 
045 2 |b d20240201  |b d20240229 
084 |a 65720  |2 nlm 
100 1 |a Silvestri, Stefano  |u Institute for High Performance Computing and Networking of the National Research Council of Italy, ICAR-CNR, Naples, Italy (GRID:grid.5326.2) (ISNI:0000 0001 1940 4177) 
245 1 |a Cyber threat assessment and management for securing healthcare ecosystems using natural language processing 
260 |b Springer Nature B.V.  |c Feb 2024 
513 |a Journal Article 
520 3 |a The healthcare sectors have constantly faced significant challenge due to the rapid rise of cyber threats. These threats can pose any potential risk within the system context and disrupt the critical healthcare service delivery. It is therefore necessary for the healthcare organisations to understand and tackle the threats to ensure overall security and resilience. However, threats are continuously evolved and there is large amount of unstructured security-related textual information is available. This makes the threat assessment and management task very challenging. There are a number of existing works that consider Machine Learning models for detection and prediction of cyber attack but they lack of focus on the Natural Language Processing (NLP) to extract the threat information from unstructured security-related text. To this end, this work proposes a novel method to assess and manage threats by adopting natural language processing. The proposed method has been tailored for the healthcare ecosystem and allows to identify and assess the possible threats within healthcare information infrastructure so that appropriate control and mitigation actions can be taken into consideration to tackle the threat. In detail, NLP techniques are used to extract the useful threat information related to specific assets of the healthcare ecosystems from the largely available security-related information on Internet (e.g. cyber security news), to evaluate the level of the identified threats and to select the required mitigation actions. We have performed experiments on real healthcare ecosystems in Fraunhofer Institute for Biomedical Engineering, considering in particular three different healthcare scenarios, namely implantable medical devices, wearables, and biobank, with the purpose of demonstrating the feasibility of our approach, which is able to provide a realistic manner to identify and assess the threats, evaluate the threat level and suggest the required mitigation actions. 
653 |a Threat assessment 
653 |a Threat evaluation 
653 |a Natural language processing 
653 |a Unstructured data 
653 |a Health services 
653 |a Machine learning 
653 |a Strategic management 
653 |a Health care 
653 |a Biomedical engineering 
653 |a Cybersecurity 
653 |a Experiments 
653 |a Threats 
653 |a Prediction models 
653 |a Internet 
653 |a Security 
653 |a Verbal aggression 
653 |a Resilience 
653 |a Mitigation 
653 |a Infrastructure 
653 |a Medical supplies 
653 |a Feasibility 
653 |a Biomedicine 
653 |a Action 
653 |a Information 
653 |a Action control 
653 |a Language 
653 |a Evaluation 
700 1 |a Islam, Shareful  |u Science Anglia Ruskin University, School of Computing and Information, Cambridge, UK (GRID:grid.5115.0) (ISNI:0000 0001 2299 5510); Focal Point, Waterloo, Belgium (GRID:grid.5115.0) 
700 1 |a Amelin, Dmitry  |u Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany (GRID:grid.452493.d) (ISNI:0000 0004 0542 0741) 
700 1 |a Weiler, Gabriele  |u Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany (GRID:grid.452493.d) (ISNI:0000 0004 0542 0741) 
700 1 |a Papastergiou, Spyridon  |u Focal Point, Waterloo, Belgium (GRID:grid.452493.d); University of Piraeus, Department of Informatics, Piraeus, Greece (GRID:grid.4463.5) (ISNI:0000 0001 0558 8585) 
700 1 |a Ciampi, Mario  |u Institute for High Performance Computing and Networking of the National Research Council of Italy, ICAR-CNR, Naples, Italy (GRID:grid.5326.2) (ISNI:0000 0001 1940 4177) 
773 0 |t International Journal of Information Security  |g vol. 23, no. 1 (Feb 2024), p. 31 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2917414650/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2917414650/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch