Navigating Expertise in Configurable Software Systems through the Maze of Variability

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:arXiv.org (Jan 19, 2024), p. n/a
المؤلف الرئيسي: Milano, Karolina
مؤلفون آخرون: Cafeo, Bruno
منشور في:
Cornell University Library, arXiv.org
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full text outside of ProQuest
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 2917417161
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2917417161 
045 0 |b d20240119 
100 1 |a Milano, Karolina 
245 1 |a Navigating Expertise in Configurable Software Systems through the Maze of Variability 
260 |b Cornell University Library, arXiv.org  |c Jan 19, 2024 
513 |a Working Paper 
520 3 |a The understanding of source code in large-scale software systems poses a challenge for developers. The role of expertise in source code becomes critical for identifying developers accountable for substantial changes. However, in the context of configurable software systems (CSS) using pre-processing and conditional compilation, conventional expertise metrics may encounter limitations due to the non-alignment of variability implementation with the natural module structure. This early research study investigates the distribution of development efforts in CSS, specifically focusing on variable and mandatory code. It also examines the engagement of designated experts with variable code in their assigned files. The findings provide insights into task allocation dynamics and raise questions about the applicability of existing metrics, laying the groundwork for alternative approaches to assess developer expertise in handling variable code. This research aims to contribute to a comprehensive understanding of challenges within CSS, marking initial steps toward advancing the evaluation of expertise in this context. 
653 |a Source code 
653 |a Configurable programs 
653 |a Context 
653 |a Software 
653 |a Variability 
700 1 |a Cafeo, Bruno 
773 0 |t arXiv.org  |g (Jan 19, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2917417161/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2401.10699