Efficient approximation of Earth Mover's Distance Based on Nearest Neighbor Search

Sábháilte in:
Sonraí bibleagrafaíochta
Foilsithe in:arXiv.org (Jan 20, 2024), p. n/a
Príomhchruthaitheoir: Meng, Guangyu
Rannpháirtithe: Zhou, Ruyu, Liu, Liu, Liang, Peixian, Liu, Fang, Chen, Danny, Niemier, Michael, Hu, X Sharon
Foilsithe / Cruthaithe:
Cornell University Library, arXiv.org
Ábhair:
Rochtain ar líne:Citation/Abstract
Full text outside of ProQuest
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000nab a2200000uu 4500
001 2917660284
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2917660284 
045 0 |b d20240120 
100 1 |a Meng, Guangyu 
245 1 |a Efficient approximation of Earth Mover's Distance Based on Nearest Neighbor Search 
260 |b Cornell University Library, arXiv.org  |c Jan 20, 2024 
513 |a Working Paper 
520 3 |a Earth Mover's Distance (EMD) is an important similarity measure between two distributions, used in computer vision and many other application domains. However, its exact calculation is computationally and memory intensive, which hinders its scalability and applicability for large-scale problems. Various approximate EMD algorithms have been proposed to reduce computational costs, but they suffer lower accuracy and may require additional memory usage or manual parameter tuning. In this paper, we present a novel approach, NNS-EMD, to approximate EMD using Nearest Neighbor Search (NNS), in order to achieve high accuracy, low time complexity, and high memory efficiency. The NNS operation reduces the number of data points compared in each NNS iteration and offers opportunities for parallel processing. We further accelerate NNS-EMD via vectorization on GPU, which is especially beneficial for large datasets. We compare NNS-EMD with both the exact EMD and state-of-the-art approximate EMD algorithms on image classification and retrieval tasks. We also apply NNS-EMD to calculate transport mapping and realize color transfer between images. NNS-EMD can be 44x to 135x faster than the exact EMD implementation, and achieves superior accuracy, speedup, and memory efficiency over existing approximate EMD methods. 
653 |a Accuracy 
653 |a Parallel processing 
653 |a Image classification 
653 |a Algorithms 
653 |a Vector processing (computers) 
653 |a Computer vision 
653 |a Mathematical analysis 
653 |a Iterative methods 
653 |a Data points 
700 1 |a Zhou, Ruyu 
700 1 |a Liu, Liu 
700 1 |a Liang, Peixian 
700 1 |a Liu, Fang 
700 1 |a Chen, Danny 
700 1 |a Niemier, Michael 
700 1 |a Hu, X Sharon 
773 0 |t arXiv.org  |g (Jan 20, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2917660284/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2401.07378