Icy Moon Surface Simulation and Stereo Depth Estimation for Sampling Autonomy

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Jan 23, 2024), p. n/a
Autor principal: Ramchander Bhaskara
Altres autors: Georgakis, Georgios, Nash, Jeremy, Cameron, Marissa, Bowkett, Joseph, Ansar, Adnan, Majji, Manoranjan, Backes, Paul
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2918027592
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1109/AERO58975.2024.10521439  |2 doi 
035 |a 2918027592 
045 0 |b d20240123 
100 1 |a Ramchander Bhaskara 
245 1 |a Icy Moon Surface Simulation and Stereo Depth Estimation for Sampling Autonomy 
260 |b Cornell University Library, arXiv.org  |c Jan 23, 2024 
513 |a Working Paper 
520 3 |a Sampling autonomy for icy moon lander missions requires understanding of topographic and photometric properties of the sampling terrain. Unavailability of high resolution visual datasets (either bird-eye view or point-of-view from a lander) is an obstacle for selection, verification or development of perception systems. We attempt to alleviate this problem by: 1) proposing Graphical Utility for Icy moon Surface Simulations (GUISS) framework, for versatile stereo dataset generation that spans the spectrum of bulk photometric properties, and 2) focusing on a stereo-based visual perception system and evaluating both traditional and deep learning-based algorithms for depth estimation from stereo matching. The surface reflectance properties of icy moon terrains (Enceladus and Europa) are inferred from multispectral datasets of previous missions. With procedural terrain generation and physically valid illumination sources, our framework can fit a wide range of hypotheses with respect to visual representations of icy moon terrains. This is followed by a study over the performance of stereo matching algorithms under different visual hypotheses. Finally, we emphasize the standing challenges to be addressed for simulating perception data assets for icy moons such as Enceladus and Europa. Our code can be found here: https://github.com/nasa-jpl/guiss. 
653 |a Datasets 
653 |a Space missions 
653 |a Matching 
653 |a Visual perception 
653 |a Icy satellites 
653 |a Photometry 
653 |a Hypotheses 
653 |a Lunar surface 
653 |a Jupiter 
653 |a Europa 
653 |a Algorithms 
653 |a Machine learning 
653 |a Enceladus 
653 |a Simulation 
653 |a Terrain 
653 |a Visual perception driven algorithms 
653 |a Sampling 
653 |a Autonomy 
700 1 |a Georgakis, Georgios 
700 1 |a Nash, Jeremy 
700 1 |a Cameron, Marissa 
700 1 |a Bowkett, Joseph 
700 1 |a Ansar, Adnan 
700 1 |a Majji, Manoranjan 
700 1 |a Backes, Paul 
773 0 |t arXiv.org  |g (Jan 23, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2918027592/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2401.12414