A discrete time/resource trade-off problem with a critical chain method under uncertainty: a hybrid meta-heuristic algorithm

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Soft Computing vol. 27, no. 23 (Dec 2023), p. 17867
Egile nagusia: Kamandanipour, Keyvan
Beste egile batzuk: Tavakkoli-Moghaddam, Reza, Haji Yakhchali, Siamak
Argitaratua:
Springer Nature B.V.
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 2918055240
003 UK-CbPIL
022 |a 1432-7643 
022 |a 1433-7479 
024 7 |a 10.1007/s00500-023-09065-0  |2 doi 
035 |a 2918055240 
045 2 |b d20231201  |b d20231231 
100 1 |a Kamandanipour, Keyvan  |u University of Tehran, School of Industrial Engineering, College of Engineering, Tehran, Iran (GRID:grid.46072.37) (ISNI:0000 0004 0612 7950) 
245 1 |a A discrete time/resource trade-off problem with a critical chain method under uncertainty: a hybrid meta-heuristic algorithm 
260 |b Springer Nature B.V.  |c Dec 2023 
513 |a Journal Article 
520 3 |a In recent years, the resource-constrained project scheduling problem and its variants have attracted wide attention from the perspective of theory and practice. In many projects, the amounts of the work content for the activities are specified, while the activities are executed in different modes of discrete duration and resource consumption per time. This paper focuses on this specific generalization of the resource-constrained project scheduling problem, known as the discrete time/resource trade-off problem (DTRTP). An efficient mathematical model for the DTRTP with renewable resource types is presented. Since this problem is NP-hard, a hybrid heuristic/meta-heuristic algorithm is proposed to solve the deterministic model in large sizes. Then, a critical chain project management approach is employed to handle the uncertainty of activities’ work contents. Finally, several numerical examples based on the previous studies and generated examples are presented to demonstrate the performance of the proposed procedure. The proposed hybrid algorithm for deterministic cases is statistically compared with an existing exact optimization tool. The simulation-based statistical analyses showed that the proposed hybrid meta-heuristic algorithm could find global optimums for small-sized cases in shorter run times. While the exact solver cannot solve medium- and large-sized problems, the proposed nested algorithm reaches high-quality local solutions in suitable run times. Also, the simulations indicated that the proposed project scheduling can face uncertainty, at least in 77% of the cases. 
653 |a Workforce planning 
653 |a Scheduling 
653 |a Random variables 
653 |a Mathematical models 
653 |a Genetic algorithms 
653 |a Tradeoffs 
653 |a Project management 
653 |a Renewable resources 
653 |a Resource scheduling 
653 |a Algorithms 
653 |a Methods 
653 |a Heuristic 
653 |a Statistical analysis 
653 |a Uncertainty 
653 |a Heuristic methods 
653 |a Run time (computers) 
700 1 |a Tavakkoli-Moghaddam, Reza  |u University of Tehran, School of Industrial Engineering, College of Engineering, Tehran, Iran (GRID:grid.46072.37) (ISNI:0000 0004 0612 7950) 
700 1 |a Haji Yakhchali, Siamak  |u University of Tehran, School of Industrial Engineering, College of Engineering, Tehran, Iran (GRID:grid.46072.37) (ISNI:0000 0004 0612 7950) 
773 0 |t Soft Computing  |g vol. 27, no. 23 (Dec 2023), p. 17867 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2918055240/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2918055240/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2918055240/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch