Continuum Modeling and Boundary Control of a Satellite with a Large Space Truss Structure

Saved in:
Bibliographic Details
Published in:Aerospace vol. 11, no. 1 (2024), p. 54
Main Author: Cao, Shilei
Other Authors: Yang, Man, Liu, Jian
Published:
MDPI AG
Subjects:
Online Access:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nab a2200000uu 4500
001 2918503825
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace11010054  |2 doi 
035 |a 2918503825 
045 2 |b d20240101  |b d20241231 
084 |a 231330  |2 nlm 
100 1 |a Cao, Shilei  |u School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; <email>liujian@hit.edu.cn</email> 
245 1 |a Continuum Modeling and Boundary Control of a Satellite with a Large Space Truss Structure 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Due to its advantages of easy deployment and high stiffness-to-mass ratio, the utilization of truss structures for constructing large satellites presents an appealing solution for modern space missions, including Earth observation and astronomy. However, the dimensions of the traditional finite element model for a satellite with a large space truss structure become exceedingly large as the structure’s size increases. The control system design process based on the finite element model is complex and time-consuming. This paper employs the continuum modeling method to represent the truss structure as a continuous entity. The bending vibrations of the truss structure are encapsulated by a simplified partial differential equation (PDE), as opposed to the more intricate traditional finite element model. Simultaneously, the satellite’s attitude motion is characterized by an ordinary differential equation (ODE). Building upon this coupled PDE-ODE model, a boundary control law that only requires sensors/actuators at the boundary is formulated to effectively mitigate structural vibrations and regulate the satellite’s attitude. The exponential stability of this closed-loop system is scrutinized using Lyapunov’s direct method. The simulation results affirm that the continuum modeling method is indeed well-suited for satellites endowed with substantial truss structures, and the proposed boundary law proves to be highly effective in both attitude tracking and vibration suppression. 
653 |a Finite element method 
653 |a Smart materials 
653 |a Astronomy 
653 |a Control systems 
653 |a Investigations 
653 |a Boundary control 
653 |a Vibration control 
653 |a Systems design 
653 |a Continuum modeling 
653 |a Closed loops 
653 |a Modelling 
653 |a Performance evaluation 
653 |a Fuzzy logic 
653 |a Vibration 
653 |a Simulation 
653 |a Control theory 
653 |a Partial differential equations 
653 |a Space missions 
653 |a Control systems design 
653 |a Attitude stability 
653 |a Genetic algorithms 
653 |a Sensors 
653 |a Controllers 
653 |a Design 
653 |a Mathematical models 
653 |a Satellites 
653 |a Trussed structures 
653 |a Satellite tracking 
653 |a Feedback control 
653 |a Actuators 
700 1 |a Yang, Man  |u HIT Satellite Technology Co., Ltd., Harbin 150001, China; <email>yangman0503@163.com</email> 
700 1 |a Liu, Jian  |u School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; <email>liujian@hit.edu.cn</email> 
773 0 |t Aerospace  |g vol. 11, no. 1 (2024), p. 54 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2918503825/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2918503825/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2918503825/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch