A large-scale wave-current coupled module with wave diffraction effect on unstructured meshes

Guardado en:
Detalles Bibliográficos
Publicado en:Science China. Physics, Mechanics & Astronomy vol. 57, no. 7 (Jul 2014), p. 1331
Autor principal: Wang, Ping
Otros Autores: Zhang, NingChuan
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2918568028
003 UK-CbPIL
022 |a 1674-7348 
022 |a 1869-1927 
022 |a 1672-1799 
024 7 |a 10.1007/s11433-013-5233-z  |2 doi 
035 |a 2918568028 
045 2 |b d20140701  |b d20140731 
100 1 |a Wang, Ping  |u Dalian University of Technology, State Key Laboratory of Coastal and Offshore Engineering, Dalian, China (GRID:grid.30055.33) (ISNI:0000000092477930) 
245 1 |a A large-scale wave-current coupled module with wave diffraction effect on unstructured meshes 
260 |b Springer Nature B.V.  |c Jul 2014 
513 |a Journal Article 
520 3 |a Based on the extended mild-slope equation, a large-scale wave module is developed. By combining the eikonal equation and the modified wave action equation, the wave model can account for diffraction in most situations such as in the lee of islands and breakwaters, and using unstructured meshes provides great flexibility for modelling the wave in the complex geomorphology of barriers and islands, also allowing for refinement of the grid resolution within computationally important domains. The numerical implementation of the module is based on the explicit second-order upwind finite-volume schemes in geographic space, the Flux-Corrected Transport (FCT) algorithm in frequency space and the implicit Crank-Nicolson method in directional space. The three-dimensional hydrodynamic module is then modified to couple with the wave model, where the wave readily provides the depth-dependent radiation stress and the wave-induced turbulence coefficient for the current fields, and the wave propagation takes into account the current-induced advection, refraction and diffraction of wave energy and the effect of water level. The applicability of the proposed model to calculate Snell’s Law, wave transformation over the breakwaters and the elliptic shoal, wave propagation over the rip current field and the undertow on a sloping beach is evaluated. Numerical results show that the present model makes better predictions of the near-shore wave propagation and complex three-dimensional (3D) near-shore circulation driven by the waves, considering analytical solutions and experimental values. 
653 |a Water levels 
653 |a Propagation 
653 |a Undertow 
653 |a Wave diffraction 
653 |a Wave action 
653 |a Wave propagation 
653 |a Nearshore circulation 
653 |a Rip currents 
653 |a Eikonal equation 
653 |a Geomorphology 
653 |a Exact solutions 
653 |a Breakwaters 
653 |a Algorithms 
653 |a Wave energy 
653 |a Finite volume method 
653 |a Mathematical models 
653 |a Modules 
653 |a Flux corrected transport 
653 |a Islands 
653 |a Environmental 
700 1 |a Zhang, NingChuan  |u Dalian University of Technology, State Key Laboratory of Coastal and Offshore Engineering, Dalian, China (GRID:grid.30055.33) (ISNI:0000000092477930) 
773 0 |t Science China. Physics, Mechanics & Astronomy  |g vol. 57, no. 7 (Jul 2014), p. 1331 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2918568028/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2918568028/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch