Identification schemes for unmanned excavator arm parameters

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Machine Intelligence Research vol. 5, no. 2 (Apr 2008), p. 185
Yazar: Zweiri, Yahya H.
Baskı/Yayın Bilgisi:
Springer Nature B.V.
Konular:
Online Erişim:Citation/Abstract
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 2918682148
003 UK-CbPIL
022 |a 2153-182X 
022 |a 2153-1838 
024 7 |a 10.1007/s11633-008-0185-x  |2 doi 
035 |a 2918682148 
045 2 |b d20080401  |b d20080430 
100 1 |a Zweiri, Yahya H.  |u Mu’tah University, Department of Mechanical Engineering, Karak, Jordan (GRID:grid.440897.6) 
245 1 |a Identification schemes for unmanned excavator arm parameters 
260 |b Springer Nature B.V.  |c Apr 2008 
513 |a Journal Article 
520 3 |a Parameter identification is a key requirement in the field of automated control of unmanned excavators (UEs). Furthermore, the UE operates in unstructured, often hazardous environments, and requires a robust parameter identification scheme for field applications. This paper presents the results of a research study on parameter identification for UE. Three identification methods, the Newton-Raphson method, the generalized Newton method, and the least squares method are used and compared for prediction accuracy, robustness to noise and computational speed. The techniques are used to identify the link parameters (mass, inertia, and length) and friction coefficients of the full-scale UE. Using experimental data from a full-scale field UE, the values of link parameters and the friction coefficient are identified. Some of the identified parameters are compared with measured physical values. Furthermore, the joint torques and positions computed by the proposed model using the identified parameters are validated against measured data. The comparison shows that both the Newton-Raphson method and the generalized Newton method are better in terms of prediction accuracy. The Newton-Raphson method is computationally efficient and has potential for real time application, but the generalized Newton method is slightly more robust to measurement noise. The experimental data were obtained in collaboration with QinetiQ Ltd. 
653 |a Accuracy 
653 |a Parameter identification 
653 |a Excavators 
653 |a Newton methods 
653 |a Noise measurement 
653 |a Coefficient of friction 
653 |a Identification methods 
653 |a Noise prediction 
653 |a Hazardous areas 
653 |a Least squares method 
653 |a Newton-Raphson method 
653 |a Parameter robustness 
653 |a Robustness (mathematics) 
653 |a Automatic control 
773 0 |t Machine Intelligence Research  |g vol. 5, no. 2 (Apr 2008), p. 185 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2918682148/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2918682148/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch