Artificial Intelligence-Based Aquaculture System for Optimizing the Quality of Water: A Systematic Analysis

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Marine Science and Engineering vol. 12, no. 1 (2024), p. 161
Autor principal: Capetillo-Contreras, Omar
Otros Autores: Pérez-Reynoso, Francisco David, Zamora-Antuñano, Marco Antonio, Álvarez-Alvarado, José Manuel, Rodríguez-Reséndiz, Juvenal
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2918777524
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse12010161  |2 doi 
035 |a 2918777524 
045 2 |b d20240101  |b d20241231 
084 |a 231479  |2 nlm 
100 1 |a Capetillo-Contreras, Omar  |u Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico; <email>ccapetillo08@alumnos.uaq.mx</email> 
245 1 |a Artificial Intelligence-Based Aquaculture System for Optimizing the Quality of Water: A Systematic Analysis 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a The world population is expected to grow to around 9 billion by 2050. The growing need for foods with high protein levels makes aquaculture one of the fastest-growing food industries in the world. Some challenges of fishing production are related to obsolete aquaculture techniques, overexploitation of marine species, and lack of water quality control. This research systematically analyzes aquaculture technologies, such as sensors, artificial intelligence (AI), and image processing. Through the systematic PRISMA process, 753 investigations published from 2012 to 2023 were analyzed based on a search in Scopus and Web of Science. It revealed a significant 70.5% increase in the number of articles published compared to the previous year, indicating a growing interest in this field. The results indicate that current aquaculture technologies are water monitoring sensors, AI methodologies such as K-means, and contour segmentation for computer vision. Also, it is reported that K means technologies offer an efficiency from 95% to 98%. These methods allow decisions based on data patterns and aquaculture insights. Improving aquaculture methodologies will allow adequate management of economic and environmental resources to promote fishing and satisfy nutritional needs. 
653 |a Water quality control 
653 |a Food security 
653 |a Sensors 
653 |a World population 
653 |a Image processing 
653 |a Computer vision 
653 |a Environmental impact 
653 |a Quality control 
653 |a Water monitoring 
653 |a Proteins 
653 |a Polyculture (aquaculture) 
653 |a Water quality 
653 |a Fishing 
653 |a Food industry 
653 |a Environmental management 
653 |a Classification 
653 |a Artificial intelligence 
653 |a Engineering 
653 |a Ponds 
653 |a Aquaculture techniques 
653 |a Aquaculture 
653 |a Overexploitation 
653 |a Salinity 
653 |a Fish 
653 |a Methods 
653 |a Trends 
653 |a Fisheries 
653 |a Foods 
653 |a Publications 
653 |a Taxonomy 
653 |a Economic 
700 1 |a Pérez-Reynoso, Francisco David  |u Laboratorio Nacional de Investigación en Tecnologías Médicas (LANITEM), Centro de Ingeniería y Desarrollo Industrial (CIDESI), Querétaro 76125, Mexico; <email>investigador3.lanitem@cidesi.edu.mx</email> 
700 1 |a Zamora-Antuñano, Marco Antonio  |u Centro de Investigación, Innovación y Desarrollo Tecnológico (CIIDETEC-UVM), Universidad del Valle de México, Querétaro 76230, Mexico; <email>marco.zamora@uvmnet.edu</email> 
700 1 |a Álvarez-Alvarado, José Manuel  |u Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico; <email>ccapetillo08@alumnos.uaq.mx</email> 
700 1 |a Rodríguez-Reséndiz, Juvenal  |u Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico; <email>ccapetillo08@alumnos.uaq.mx</email> 
773 0 |t Journal of Marine Science and Engineering  |g vol. 12, no. 1 (2024), p. 161 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2918777524/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2918777524/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2918777524/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch