A 3-D Viscous Vorticity Model for Predicting Turbulent Flows over Hydrofoils

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:Journal of Marine Science and Engineering vol. 12, no. 1 (2024), p. 45
मुख्य लेखक: You, Rui
अन्य लेखक: Kinnas, Spyros A
प्रकाशित:
MDPI AG
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full Text + Graphics
Full Text - PDF
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 2918778210
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse12010045  |2 doi 
035 |a 2918778210 
045 2 |b d20240101  |b d20241231 
084 |a 231479  |2 nlm 
100 1 |a You, Rui 
245 1 |a A 3-D Viscous Vorticity Model for Predicting Turbulent Flows over Hydrofoils 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a This research addresses the demand for a computationally efficient numerical tool capable of predicting 3-D turbulent flows over 3-D hydrofoils, a critical step in ultimately addressing marine propeller or turbine performance. The related software development and its applications are conducted by employing the vorticity-based approach known as the viscous vorticity equation (VISVE). In particular, an existing 3-D laminar VISVE solver was modified in order to handle 3-D turbulent flow scenarios. The extension incorporates the <inline-formula>k−ω</inline-formula> SST model into the 3-D VISVE solver by using the finite volume method (FVM), thereby broadening its application to turbulent flows. The model was then tested in the case of turbulent flows over 3-D hydrofoils. The results were found to not be sensitive to either grid or time step size and to be in very good agreement with those obtained using a Reynolds-averaged Navier–Stokes (RANS) solver. This solver offers distinct advantages, including a significantly reduced computational domain size and reduced computational costs through its vorticity-based approach. Notably, turbulence concentration within boundary layers and free shear flows does not compromise the method’s computational efficiency. The simplified meshing process, which automatically generates the grids based on the number of panels on the hydrofoil, enhances accessibility for researchers and engineers. 
653 |a Finite volume method 
653 |a Turbulence 
653 |a Turbines 
653 |a Vortices 
653 |a Applications programs 
653 |a Hydrofoils 
653 |a Fluid dynamics 
653 |a Boundary layers 
653 |a Turbulent flow 
653 |a Sea surface 
653 |a Numerical analysis 
653 |a Solvers 
653 |a Three dimensional flow 
653 |a Computer applications 
653 |a Shear flow 
653 |a Reynolds averaged Navier-Stokes method 
653 |a Efficiency 
653 |a Vorticity 
653 |a Simulation 
653 |a Velocity 
653 |a Cavitation 
653 |a Propellers 
653 |a Partial differential equations 
653 |a Viscosity 
653 |a Turbulence models 
653 |a Three dimensional models 
653 |a Computational efficiency 
653 |a Vorticity equations 
653 |a Computing costs 
653 |a Software development 
653 |a Environmental 
700 1 |a Kinnas, Spyros A 
773 0 |t Journal of Marine Science and Engineering  |g vol. 12, no. 1 (2024), p. 45 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2918778210/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2918778210/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2918778210/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch