A Bioinspired Test Generation Method Using Discretized and Modified Bat Optimization Algorithm

Guardado en:
Detalles Bibliográficos
Publicado en:Mathematics vol. 12, no. 2 (2024), p. 186
Autor principal: Arasteh, Bahman
Otros Autores: Arasteh, Keyvan, Kiani, Farzad, Seyed Salar Sefati, Fratu, Octavian, Halunga, Simona, Erfan Babaee Tirkolaee
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2918780934
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math12020186  |2 doi 
035 |a 2918780934 
045 2 |b d20240101  |b d20241231 
084 |a 231533  |2 nlm 
100 1 |a Arasteh, Bahman  |u Department of Software Engineering, Faculty of Engineering and Natural Science, Istinye University, Istanbul 34460, Turkey; <email>keyvan.arasteh@istinye.edu.tr</email> 
245 1 |a A Bioinspired Test Generation Method Using Discretized and Modified Bat Optimization Algorithm 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a The process of software development is incomplete without software testing. Software testing expenses account for almost half of all development expenses. The automation of the testing process is seen to be a technique for reducing the cost of software testing. An NP-complete optimization challenge is to generate the test data with the highest branch coverage in the shortest time. The primary goal of this research is to provide test data that covers all branches of a software unit. Increasing the convergence speed, the success rate, and the stability of the outcomes are other goals of this study. An efficient bioinspired technique is suggested in this study to automatically generate test data utilizing the discretized Bat Optimization Algorithm (BOA). Modifying and discretizing the BOA and adapting it to the test generation problem are the main contributions of this study. In the first stage of the proposed method, the source code of the input program is statistically analyzed to identify the branches and their predicates. Then, the developed discretized BOA iteratively generates effective test data. The fitness function was developed based on the program’s branch coverage. The proposed method was implemented along with the previous one. The experiments’ results indicated that the suggested method could generate test data with about 99.95% branch coverage with a limited amount of time (16 times lower than the time of similar algorithms); its success rate was 99.85% and the average number of required iterations to cover all branches is 4.70. Higher coverage, higher speed, and higher stability make the proposed method suitable as an efficient test generation method for real-world large software. 
653 |a Research 
653 |a Source code 
653 |a Artificial intelligence 
653 |a Success 
653 |a Genetic algorithms 
653 |a Optimization 
653 |a Benchmarks 
653 |a Algorithms 
653 |a Methods 
653 |a Stability 
653 |a Costs 
653 |a Automation 
653 |a Optimization algorithms 
653 |a Discretization 
653 |a Software engineering 
653 |a Software development 
653 |a Software testing 
700 1 |a Arasteh, Keyvan  |u Department of Software Engineering, Faculty of Engineering and Natural Science, Istinye University, Istanbul 34460, Turkey; <email>keyvan.arasteh@istinye.edu.tr</email> 
700 1 |a Kiani, Farzad  |u Computer Engineering Department, Faculty of Engineering, Fatih Sultan Mehmet Vakif University, Istanbul 34445, Turkey; <email>fanka@fsm.edu.tr</email>; Data Science Application and Research Center (VEBIM), Fatih Sultan Mehmet Vakif University, Istanbul 34445, Turkey 
700 1 |a Seyed Salar Sefati  |u Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 060042 Bucuresti, Romania; <email>sefati.seyedsalar@upb.ro</email> (S.S.S.); <email>octavian.fratu@upb.ro</email> (O.F.); <email>simona.halunga@upb.ro</email> (S.H.) 
700 1 |a Fratu, Octavian  |u Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 060042 Bucuresti, Romania; <email>sefati.seyedsalar@upb.ro</email> (S.S.S.); <email>octavian.fratu@upb.ro</email> (O.F.); <email>simona.halunga@upb.ro</email> (S.H.) 
700 1 |a Halunga, Simona  |u Faculty of Electronics, Telecommunications and Information Technology, University Politehnica of Bucharest, 060042 Bucuresti, Romania; <email>sefati.seyedsalar@upb.ro</email> (S.S.S.); <email>octavian.fratu@upb.ro</email> (O.F.); <email>simona.halunga@upb.ro</email> (S.H.) 
700 1 |a Erfan Babaee Tirkolaee  |u Department of Industrial Engineering, Istinye University, Istanbul 34396, Turkey; Department of Industrial Engineering and Management, Yuan Ze University, Taoyuan 320315, Taiwan; Department of Industrial and Mechanical Engineering, Lebanese American University, Byblos 36, Lebanon 
773 0 |t Mathematics  |g vol. 12, no. 2 (2024), p. 186 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2918780934/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2918780934/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2918780934/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch