Beam-Space Post-Doppler Reduced-Dimension STAP Based on Sparse Bayesian Learning

Shranjeno v:
Bibliografske podrobnosti
izdano v:Remote Sensing vol. 16, no. 2 (2024), p. 307
Glavni avtor: Cao, Junxiang
Drugi avtorji: Wang, Tong, Degen, Wang
Izdano:
MDPI AG
Teme:
Online dostop:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Označite
Brez oznak, prvi označite!

MARC

LEADER 00000nab a2200000uu 4500
001 2918797067
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs16020307  |2 doi 
035 |a 2918797067 
045 2 |b d20240101  |b d20241231 
084 |a 231556  |2 nlm 
100 1 |a Cao, Junxiang 
245 1 |a Beam-Space Post-Doppler Reduced-Dimension STAP Based on Sparse Bayesian Learning 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a The space–time adaptive processing (STAP) technique can effectively suppress the ground clutter faced by the airborne radar during its downward-looking operation and thus can significantly improve the detection performance of moving targets. However, the optimal STAP requires a large number of independent identically distributed (i.i.d) samples to accurately estimate the clutter plus noise covariance matrix (CNCM), which limits its application in practice. In this paper, we fully consider the heterogeneity of clutter in real-world environments and propose a sparse Bayesian learning-based reduced-dimension STAP method that achieves suboptimal clutter suppression performance using only a single sample. First, the sparse Bayesian learning (SBL) algorithm is used to estimate the CNCM using a single training sample. Second, a novel angular Doppler channel selection algorithm is proposed with the criterion of maximizing the output signal-to-clutter-noise ratio (SCNR). Finally, the reduced-dimension STAP filter is constructed using the selected channels. Simulation results show that the proposed algorithm can achieve suboptimal clutter suppression performance in extremely heterogeneous clutter environments where only one training sample can be used. 
653 |a Covariance matrix 
653 |a Heterogeneity 
653 |a Bayesian analysis 
653 |a Random variables 
653 |a Algorithms 
653 |a Moving targets 
653 |a Optimization 
653 |a Target detection 
653 |a Learning 
653 |a Clutter 
653 |a Training 
653 |a Machine learning 
653 |a Airborne radar 
653 |a Space-time adaptive processing 
700 1 |a Wang, Tong 
700 1 |a Degen, Wang 
773 0 |t Remote Sensing  |g vol. 16, no. 2 (2024), p. 307 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2918797067/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2918797067/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2918797067/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch