CODEX: COunterfactual Deep learning for the in-silico EXploration of cancer cell line perturbations

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:bioRxiv (Jan 29, 2024)
المؤلف الرئيسي: Schrod, Stefan
مؤلفون آخرون: Zacharias, Helena U, Beissbarth, Tim, Hauschild, Anne-Christin, Altenbuchinger, Michael Christoph
منشور في:
Cold Spring Harbor Laboratory Press
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:Motivation: High-throughput screens (HTS) provide a powerful tool to decipher the causal effects of chemical and genetic perturbations on cancer cell lines. Their ability to evaluate a wide spectrum of interventions, from single drugs to intricate drug combinations and CRISPR interference, has established them as an invaluable resource for the development of novel therapeutic approaches. Nevertheless, the combinatorial complexity of potential interventions makes a comprehensive exploration intractable. Hence, prioritizing interventions for further experimental investigation becomes of utmost importance. Results: We propose CODEX as a general framework for the causal modeling of HTS data, linking perturbations to their downstream consequences. CODEX relies on a stringent causal modeling strategy based on counterfactual reasoning. As such, CODEX predicts drug-specific cellular responses, comprising cell survival and molecular alterations, and facilitates the in-silico exploration of drug combinations. This is achieved for both bulk and single-cell HTS. We further show that CODEX provides a rationale to explore complex genetic modifications from CRISPR-interference in silico in single cells. Availability and Implementation: Our implementation of CODEX is publicly available at https://github.com/sschrod/CODEX. All data used in this article are publicly available.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://github.com/sschrod/CODEX
تدمد:2692-8205
DOI:10.1101/2024.01.24.577020
المصدر:Biological Science Database