Dynamic XGBoost-based Quantile Predictor for Real-time Electricity Price Forecasting

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings (2023)
Egile nagusia: Bao, Tianshu
Beste egile batzuk: Wang, Xinlin, Mahdavi, Nariman, McCarthy, Chris, Rezazadegan, Dana
Argitaratua:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 2921282215
003 UK-CbPIL
024 7 |a 10.1109/ETFG55873.2023.10407379  |2 doi 
035 |a 2921282215 
045 2 |b d20230101  |b d20231231 
084 |a 228229  |2 nlm 
100 1 |a Bao, Tianshu  |u Swinburne University of Technology,VIC,Australia 
245 1 |a Dynamic XGBoost-based Quantile Predictor for Real-time Electricity Price Forecasting 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2023 
513 |a Conference Proceedings 
520 3 |a Conference Title: 2023 IEEE International Conference on Energy Technologies for Future Grids (ETFG)Conference Start Date: 2023, Dec. 3 Conference End Date: 2023, Dec. 6 Conference Location: Wollongong, AustraliaElectricity price forecasting helps traders and market participants manage risks by determining the best strategy for bidding. Given the strong correlation between electricity prices and load consumption, there has been a growing interest in developing frameworks to forecast both electricity price and load. This work proposes a real-time electricity price forecasting model built upon an existing real-time XGBoost-based electricity load forecasting framework. Our proposed model comprises three key components: Feature Selector, XGBoost-based Quantile Predictor, and Range Controller. To train and test the prediction model, the Feature Selector preprocesses and selects the appropriate features. A machine learning enabled quantile predictor is then applied to obtain one step ahead predictions (OSAP) of electricity prices. Lastly, the Range Controller offers a training-efficient approach to adjust the prediction interval and quantile values, as well as to classify spike and normal cases using an unsupervised classification method. Upon analysis using R2, RMSE and MAE, it has been consistently demonstrated that our adaptive forecasting model exhibits more than two times improvement over a year. 
653 |a Electrical loads 
653 |a Forecasting 
653 |a Prediction models 
653 |a Quantiles 
653 |a Electricity pricing 
653 |a Mathematical models 
653 |a Machine learning 
653 |a Real time 
653 |a Energy technology 
653 |a Controllers 
653 |a Electricity 
653 |a Economic 
700 1 |a Wang, Xinlin  |u CSIRO,NSW,Australia 
700 1 |a Mahdavi, Nariman  |u CSIRO,NSW,Australia 
700 1 |a McCarthy, Chris  |u Swinburne University of Technology,VIC,Australia 
700 1 |a Rezazadegan, Dana  |u Swinburne University of Technology,VIC,Australia 
773 0 |t The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings  |g (2023) 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2921282215/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch