RDNF Oriented Analytics to Random Boolean Functions

Sábháilte in:
Sonraí bibleagrafaíochta
Foilsithe in:arXiv.org (Feb 1, 2024), p. n/a
Príomhchruthaitheoir: Aslanyan, Levon
Rannpháirtithe: Arsenyan, Irina, Karakhanyan, Vilik, Sahakyan, Hasmik
Foilsithe / Cruthaithe:
Cornell University Library, arXiv.org
Ábhair:
Rochtain ar líne:Citation/Abstract
Full text outside of ProQuest
Clibeanna: Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!

MARC

LEADER 00000nab a2200000uu 4500
001 2922281708
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2922281708 
045 0 |b d20240201 
100 1 |a Aslanyan, Levon 
245 1 |a RDNF Oriented Analytics to Random Boolean Functions 
260 |b Cornell University Library, arXiv.org  |c Feb 1, 2024 
513 |a Working Paper 
520 3 |a Dominant areas of computer science and computation systems are intensively linked to the hypercube-related studies and interpretations. This article presents some transformations and analytics for some example algorithms and Boolean domain problems. Our focus is on the methodology of complexity evaluation and integration of several types of postulations concerning special hypercube structures. Our primary goal is to demonstrate the usual formulas and analytics in this area, giving the necessary set of common formulas often used for complexity estimations and approximations. The basic example under considered is the Boolean minimization problem, in terms of the average complexity of the so-called reduced disjunctive normal form (also referred to as complete, prime irredundant, or Blake canonical form). In fact, combinatorial counterparts of the disjunctive normal form complexities are investigated in terms of sets of their maximal intervals. The results obtained compose the basis of logical separation classification algorithmic technology of pattern recognition. In fact, these considerations are not only general tools of minimization investigations of Boolean functions, but they also prove useful structures, models, and analytics for constraint logic programming, machine learning, decision policy optimization and other domains of computer science. 
653 |a Decision analysis 
653 |a Boolean functions 
653 |a Mathematical analysis 
653 |a Computer science 
653 |a Combinatorial analysis 
653 |a Boolean 
653 |a Optimization 
653 |a Logic programming 
653 |a Algorithms 
653 |a Hypercubes 
653 |a Canonical forms 
653 |a Complexity 
653 |a Constraint modelling 
653 |a Machine learning 
653 |a Domains 
653 |a Pattern recognition 
700 1 |a Arsenyan, Irina 
700 1 |a Karakhanyan, Vilik 
700 1 |a Sahakyan, Hasmik 
773 0 |t arXiv.org  |g (Feb 1, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2922281708/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2402.00999