Technical note: Accurate, reliable, and high-resolution air quality predictions by improving the Copernicus Atmosphere Monitoring Service using a novel statistical post-processing method

Guardado en:
Detalles Bibliográficos
Publicado en:Atmospheric Chemistry and Physics vol. 24, no. 3 (2024), p. 1673
Autor principal: Riccio, Angelo
Otros Autores: Chianese, Elena
Publicado:
Copernicus GmbH
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2922384511
003 UK-CbPIL
022 |a 1680-7316 
022 |a 1680-7324 
024 7 |a 10.5194/acp-24-1673-2024  |2 doi 
035 |a 2922384511 
045 2 |b d20240201  |b d20240214 
084 |a 123615  |2 nlm 
100 1 |a Riccio, Angelo  |u Department of Science and Technology, Parthenope University of Naples, Centro Direzionale, Isola C4, 80143, Naples, Italy; Department of Science and Technology, Parthenope University of Naples, Via F. Petrarca 80, 80123, Naples, Italy 
245 1 |a Technical note: Accurate, reliable, and high-resolution air quality predictions by improving the Copernicus Atmosphere Monitoring Service using a novel statistical post-processing method 
260 |b Copernicus GmbH  |c 2024 
513 |a Journal Article 
520 3 |a Starting from the regional air quality forecasts produced by the Copernicus Atmosphere Monitoring Service (CAMS), we propose a novel post-processing approach to improve and downscale results on a finer scale. Our approach is based on the combination of ensemble model output statistics (EMOS) with a spatio-temporal interpolation process performed through the stochastic partial differential equation–integrated nested laplace approximation (SPDE-INLA). Our interpolation approach includes several spatial and spatio-temporal predictors, including meteorological variables. A use case is provided that scales down the CAMS forecasts on the Italian peninsula. The calibration is focused on the concentrations of several air quality pollutants (PM<inline-formula>10</inline-formula>, PM<inline-formula>2.5</inline-formula>, NO<inline-formula>2</inline-formula>, and O<inline-formula>3</inline-formula>) at a daily resolution from a set of 750 monitoring sites, distributed throughout the Italian country. Our results show the key role that conditioning variables play in improving the forecast capabilities of ensemble predictions, thus allowing for a net improvement in the calibration with respect to ordinary EMOS strategies. From a deterministic point of view, the performance of the predictive model shows a significant improvement in the performance of the raw ensemble forecast, with an almost-zero bias, significantly reduced root mean square errors, and correlations that are almost always higher than 0.9 for each pollutant; moreover, the post-processing approach is able to significantly improve the prediction of exceedances, even for very low thresholds, such as those recently recommended by the World Health Organisation. This is particularly significant if a forecasting approach is used to predict air quality conditions and plan adequate human health protection measures, even for low alert thresholds. From a probabilistic point of view, the quality of the forecast was verified in terms of reliability and credible intervals. After post-processing, the predictive probability density functions were sharp and much better calibrated than the raw ensemble forecast. Finally, we present some additional results based on a set of gridded (4 km <inline-formula>×</inline-formula> 4 km) maps covering the entire Italian country for the detection of areas where pollution peaks occur (exceedances of the current and/or proposed regulatory thresholds). 
651 4 |a Italy 
651 4 |a Europe 
653 |a Indoor air quality 
653 |a Air quality 
653 |a Calibration 
653 |a Atmosphere 
653 |a Air pollution 
653 |a Atmospheric monitoring 
653 |a Pollution detection 
653 |a Prediction models 
653 |a Geography 
653 |a Air 
653 |a Partial differential equations 
653 |a Interpolation 
653 |a Particulate matter 
653 |a Mathematical models 
653 |a Probability theory 
653 |a Ground stations 
653 |a Pollutants 
653 |a Performance prediction 
653 |a Maps 
653 |a Air quality forecasting 
653 |a Approximation 
653 |a Stochastic processes 
653 |a Probability density functions 
653 |a Ensemble forecasting 
653 |a Outdoor air quality 
653 |a Monitoring 
653 |a Statistical analysis 
653 |a Thresholds 
653 |a Nitrogen dioxide 
653 |a Environmental 
700 1 |a Chianese, Elena  |u Department of Science and Technology, Parthenope University of Naples, Centro Direzionale, Isola C4, 80143, Naples, Italy 
773 0 |t Atmospheric Chemistry and Physics  |g vol. 24, no. 3 (2024), p. 1673 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2922384511/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2922384511/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2922384511/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch