Validity-Preserving Delta Debugging via Generator Trace Reduction

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org (Dec 4, 2024), p. n/a
Hlavní autor: Ren, Luyao
Další autoři: Zhang, Xing, Ziyue Hua, Jiang, Yanyan, He, Xiao, Xiong, Yingfei, Xie, Tao
Vydáno:
Cornell University Library, arXiv.org
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 2923560536
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2923560536 
045 0 |b d20241204 
100 1 |a Ren, Luyao 
245 1 |a Validity-Preserving Delta Debugging via Generator Trace Reduction 
260 |b Cornell University Library, arXiv.org  |c Dec 4, 2024 
513 |a Working Paper 
520 3 |a Reducing test inputs that trigger bugs is crucial for efficient debugging. Delta debugging is the most popular approach for this purpose. When test inputs need to conform to certain specifications, existing delta debugging practice encounters a validity problem: it blindly applies reduction rules, producing a large number of invalid test inputs that do not satisfy the required specifications. This overall diminishing effectiveness and efficiency becomes even more pronounced when the specifications extend beyond syntactical structures. Our key insight is that we should leverage input generators, which are aware of these specifications, to generate valid reduced inputs, rather than straightforwardly performing reduction on test inputs. In this paper, we propose a generator-based delta debugging method, namely GReduce, which derives validity-preserving reducers. Specifically, given a generator and its execution, demonstrating how the bug-inducing test input is generated, GReduce searches for other executions on the generator that yield reduced, valid test inputs. The evaluation results on five benchmarks (i.e., graphs, DL models, JavaScript programs, SymPy, and algebraic data types) show that GReduce substantially outperforms state-of-the-art syntax-based reducers including Perses and T-PDD, and also outperforms QuickCheck, SmartCheck, as well as the state-of-the-art choice-sequence-based reducer Hypothesis, demonstrating the effectiveness, efficiency, and versatility of GReduce. 
653 |a Debugging 
653 |a Reduction 
653 |a Validity 
653 |a Specifications 
653 |a Effectiveness 
700 1 |a Zhang, Xing 
700 1 |a Ziyue Hua 
700 1 |a Jiang, Yanyan 
700 1 |a He, Xiao 
700 1 |a Xiong, Yingfei 
700 1 |a Xie, Tao 
773 0 |t arXiv.org  |g (Dec 4, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2923560536/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2402.04623