Developer Assignment Method for Software Defects Based on Related Issue Prediction

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Mathematics vol. 12, no. 3 (2024), p. 425
Yazar: Liu, Baochuan
Diğer Yazarlar: Zhang, Li, Liu, Zhenwei, Jiang, Jing
Baskı/Yayın Bilgisi:
MDPI AG
Konular:
Online Erişim:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 2923945268
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math12030425  |2 doi 
035 |a 2923945268 
045 2 |b d20240101  |b d20241231 
084 |a 231533  |2 nlm 
100 1 |a Liu, Baochuan 
245 1 |a Developer Assignment Method for Software Defects Based on Related Issue Prediction 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a The open-source software platform hosts a large number of software defects, and the task of relying on administrators to manually assign developers is often time consuming. Thus, it is crucial to determine how to assign software defects to appropriate developers. This paper presents DARIP, a method for assigning developers to address software defects. First, the correlation between software defects and issues is considered, predicting related issues for each defect and comprehensively calculating the textual characteristics of the defect using the BERT model. Second, a heterogeneous collaborative network is constructed based on the three development behaviors of developers: reporting, commenting, and fixing. The meta-paths are defined based on the four collaborative relationships between developers: report–comment, report–fix, comment–comment, and comment–fix. The graph-embedding algorithm metapath2vec extracts developer characteristics from the heterogeneous collaborative network. Then, a classifier based on a deep learning model calculates the probability assigned to each developer category. Finally, the assignment list is obtained according to the probability ranking. Experiments on a dataset of 20,280 defects from 9 popular projects show that the DARIP method improves the average of the Recall@5, the Recall@10, and the MRR by 31.13%, 21.40%, and 25.45%, respectively, compared to the state-of-the-art method. 
653 |a Recall 
653 |a Algorithms 
653 |a Collaboration 
653 |a Defects 
653 |a Public domain 
653 |a Machine learning 
653 |a Open source software 
653 |a Software 
700 1 |a Zhang, Li 
700 1 |a Liu, Zhenwei 
700 1 |a Jiang, Jing 
773 0 |t Mathematics  |g vol. 12, no. 3 (2024), p. 425 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2923945268/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2923945268/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2923945268/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch