An improved estimation of distribution algorithm for rescue task emergency scheduling considering stochastic deterioration of the injured

Сохранить в:
Библиографические подробности
Опубликовано в::Complex & Intelligent Systems vol. 10, no. 1 (Feb 2024), p. 413
Главный автор: Xu, Ying
Другие авторы: Li, Xiaobo, Li, Qian, Zhang, Weipeng
Опубликовано:
Springer Nature B.V.
Предметы:
Online-ссылка:Citation/Abstract
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 2924576563
003 UK-CbPIL
022 |a 2199-4536 
022 |a 2198-6053 
024 7 |a 10.1007/s40747-023-01136-x  |2 doi 
035 |a 2924576563 
045 2 |b d20240201  |b d20240229 
100 1 |a Xu, Ying  |u Ningbo University, Faculty of Electrical Engineering and Computer Science, Ningbo, China (GRID:grid.203507.3) (ISNI:0000 0000 8950 5267); Ningbo University of Finance & Economics, College of Digital Technology and Engineer, Ningbo, China (GRID:grid.203507.3) (ISNI:0000 0000 8950 5267) 
245 1 |a An improved estimation of distribution algorithm for rescue task emergency scheduling considering stochastic deterioration of the injured 
260 |b Springer Nature B.V.  |c Feb 2024 
513 |a Journal Article 
520 3 |a Efficient allocating and scheduling emergency rescue tasks are a primary issue for emergency management. This paper considers emergency scheduling of rescue tasks under stochastic deterioration of the injured. First, a mathematical model is established to minimize the average mathematical expectation of all tasks’ completion time and casualty loss. Second, an improved multi-objective estimation of distribution algorithm (IMEDA) is proposed to solve this problem. In the IMDEA, an effective initialization strategy is designed for obtaining a superior population. Then, three statistical models are constructed, which include two tasks existing in the same rescue team, the probability of first task being processed by a rescue team, and the adjacency between two tasks. Afterward, an improved sampling method based on referenced sequence is employed to efficiently generate offspring population. Three multi-objective local search methods are presented to improve the exploitation in promising areas around elite individuals. Furthermore, the parameter calibration and effectiveness of components of IMEDA are tested through experiments. Finally, the comprehensive comparison with state-of-the-art multi-objective algorithms demonstrates that IMEDA is a high-performing approach for the considered problem. 
653 |a Emergency management 
653 |a Algorithms 
653 |a Task scheduling 
653 |a Rescue operations 
653 |a Multiple objective analysis 
653 |a Completion time 
653 |a Statistical analysis 
653 |a Statistical models 
653 |a Population (statistical) 
653 |a Scheduling 
653 |a Computer science 
653 |a Emergency preparedness 
653 |a Mathematical models 
653 |a Intelligent systems 
653 |a Optimization 
653 |a Disasters 
653 |a Probability distribution 
700 1 |a Li, Xiaobo  |u Zhejiang Normal University, School of Computer Science and Technology, Jinhua, China (GRID:grid.453534.0) (ISNI:0000 0001 2219 2654) 
700 1 |a Li, Qian  |u Ningbo University of Finance & Economics, College of Digital Technology and Engineer, Ningbo, China (GRID:grid.203507.3) (ISNI:0000 0000 8950 5267) 
700 1 |a Zhang, Weipeng  |u Ningbo University of Finance & Economics, College of Digital Technology and Engineer, Ningbo, China (GRID:grid.203507.3) (ISNI:0000 0000 8950 5267) 
773 0 |t Complex & Intelligent Systems  |g vol. 10, no. 1 (Feb 2024), p. 413 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2924576563/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2924576563/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch