Anatomizing Deep Learning Inference in Web Browsers

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org (Jul 25, 2024), p. n/a
1. Verfasser: Wang, Qipeng
Weitere Verfasser: Jiang, Shiqi, Chen, Zhenpeng, Cao, Xu, Li, Yuanchun, Li, Aoyu, Ma, Yun, Cao, Ting, Liu, Xuanzhe
Veröffentlicht:
Cornell University Library, arXiv.org
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 2925286048
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2925286048 
045 0 |b d20240725 
100 1 |a Wang, Qipeng 
245 1 |a Anatomizing Deep Learning Inference in Web Browsers 
260 |b Cornell University Library, arXiv.org  |c Jul 25, 2024 
513 |a Working Paper 
520 3 |a Web applications have increasingly adopted Deep Learning (DL) through in-browser inference, wherein DL inference performs directly within Web browsers. The actual performance of in-browser inference and its impacts on the quality of experience (QoE) remain unexplored, and urgently require new QoE measurements beyond traditional ones, e.g., mainly focusing on page load time. To bridge this gap, we make the first comprehensive performance measurement of in-browser inference to date. Our approach proposes new metrics to measure in-browser inference: responsiveness, smoothness, and inference accuracy. Our extensive analysis involves 9 representative DL models across Web browsers of 50 popular PC devices and 20 mobile devices. The results reveal that in-browser inference exhibits a substantial latency gap, averaging 16.9 times slower on CPU and 4.9 times slower on GPU compared to native inference on PC devices. The gap on mobile CPU and mobile GPU is 15.8 times and 7.8 times, respectively. Furthermore, we identify contributing factors to such latency gap, including underutilized hardware instruction sets, inherent overhead in the runtime environment, resource contention within the browser, and inefficiencies in software libraries and GPU abstractions. Additionally, in-browser inference imposes significant memory demands, at times exceeding 334.6 times the size of the DL models themselves, partly attributable to suboptimal memory management. We also observe that in-browser inference leads to a significant 67.2% increase in the time it takes for GUI components to render within Web browsers, significantly affecting the overall user QoE of Web applications reliant on this technology 
653 |a Deep learning 
653 |a Performance evaluation 
653 |a Smoothness 
653 |a User experience 
653 |a Applications programs 
653 |a Graphics processing units 
653 |a Inference 
653 |a Web browsers 
653 |a Graphical user interface 
653 |a Memory management 
653 |a Run time (computers) 
700 1 |a Jiang, Shiqi 
700 1 |a Chen, Zhenpeng 
700 1 |a Cao, Xu 
700 1 |a Li, Yuanchun 
700 1 |a Li, Aoyu 
700 1 |a Ma, Yun 
700 1 |a Cao, Ting 
700 1 |a Liu, Xuanzhe 
773 0 |t arXiv.org  |g (Jul 25, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2925286048/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2402.05981