Natural Language Processing of Referral Letters for Machine Learning–Based Triaging of Patients With Low Back Pain to the Most Appropriate Intervention: Retrospective Study

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Medical Internet Research vol. 26, no. 1 (2024), p. e46857
Autor principal: Fudickar, Sebastian
Altres autors: Bantel, Carsten, Spieker, Jannik, Töpfer, Heinrich, Stegeman, Patrick, Henrica R Schiphorst Preuper, Reneman, Michiel F, Wolff, André P, Soer, Remko
Publicat:
Gunther Eysenbach MD MPH, Associate Professor
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 2925488405
003 UK-CbPIL
022 |a 1438-8871 
024 7 |a 10.2196/46857  |2 doi 
035 |a 2925488405 
045 2 |b d20240101  |b d20241231 
100 1 |a Fudickar, Sebastian 
245 1 |a Natural Language Processing of Referral Letters for Machine Learning–Based Triaging of Patients With Low Back Pain to the Most Appropriate Intervention: Retrospective Study 
260 |b Gunther Eysenbach MD MPH, Associate Professor  |c 2024 
513 |a Journal Article 
520 3 |a Background:Decision support systems (DSSs) for suggesting optimal treatments for individual patients with low back pain (LBP) are currently insufficiently accurate for clinical application. Most of the input provided to train these systems is based on patient-reported outcome measures. However, with the appearance of electronic health records (EHRs), additional qualitative data on reasons for referrals and patients’ goals become available for DSSs. Currently, no decision support tools cover a wide range of biopsychosocial factors, including referral letter information to help clinicians triage patients to the optimal LBP treatment.Objective:The objective of this study was to investigate the added value of including qualitative data from EHRs and referral letters to the accuracy of a quantitative DSS for patients with LBP.Methods:A retrospective study was conducted in a clinical cohort of Dutch patients with LBP. Patients filled out a baseline questionnaire about demographics, pain, disability, work status, quality of life, medication, psychosocial functioning, comorbidity, history, and duration of pain. Referral reasons and patient requests for help (patient goals) were extracted via natural language processing (NLP) and enriched in the data set. For decision support, these data were considered independent factors for triage to neurosurgery, anesthesiology, rehabilitation, or minimal intervention. Support vector machine, k-nearest neighbor, and multilayer perceptron models were trained for 2 conditions: with and without consideration of the referral letter content. The models’ accuracies were evaluated via F1-scores, and confusion matrices were used to predict the treatment path (out of 4 paths) with and without additional referral parameters.Results:Data from 1608 patients were evaluated. The evaluation indicated that 2 referral reasons from the referral letters (for anesthesiology and rehabilitation intervention) increased the F1-score accuracy by up to 19.5% for triaging. The confusion matrices confirmed the results.Conclusions:This study indicates that data enriching by adding NLP-based extraction of the content of referral letters increases the model accuracy of DSSs in suggesting optimal treatments for individual patients with LBP. Overall model accuracies were considered low and insufficient for clinical application. 
653 |a Intervention 
653 |a Datasets 
653 |a Extraction 
653 |a Neurosurgery 
653 |a Questionnaires 
653 |a Rehabilitation 
653 |a Medical referrals 
653 |a Biopsychosocial aspects 
653 |a Low back pain 
653 |a Patients 
653 |a Qualitative research 
653 |a Machine learning 
653 |a Electronic health records 
653 |a Anesthesiology 
653 |a Matrices 
653 |a Drugs 
653 |a Quality of life 
653 |a Artificial intelligence 
653 |a Back pain 
653 |a Work status 
653 |a Surgery 
653 |a Psychosocial factors 
653 |a Cohort analysis 
653 |a Triage 
653 |a Computerized medical records 
653 |a Occupational status 
653 |a Natural language processing 
653 |a Digitization 
653 |a Health records 
653 |a Psychosocial functioning 
653 |a Confusion 
653 |a Comorbidity 
653 |a Decision support systems 
653 |a Accuracy 
653 |a Demography 
653 |a Dutch language 
653 |a Medical records 
653 |a Support networks 
653 |a Letters (Correspondence) 
653 |a Data 
653 |a Data processing 
653 |a Decisions 
653 |a Treatment methods 
653 |a Referrals 
653 |a Medical treatment 
653 |a Pain 
700 1 |a Bantel, Carsten 
700 1 |a Spieker, Jannik 
700 1 |a Töpfer, Heinrich 
700 1 |a Stegeman, Patrick 
700 1 |a Henrica R Schiphorst Preuper 
700 1 |a Reneman, Michiel F 
700 1 |a Wolff, André P 
700 1 |a Soer, Remko 
773 0 |t Journal of Medical Internet Research  |g vol. 26, no. 1 (2024), p. e46857 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2925488405/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/2925488405/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2925488405/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch