Enhancing Knapsack-based Financial Portfolio Optimization Using Quantum Approximate Optimization Algorithm

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org (Dec 21, 2024), p. n/a
Hlavní autor: Huot, Chansreynich
Další autoři: Kea, Kimleang, Tae-Kyung, Kim, Han, Youngsun
Vydáno:
Cornell University Library, arXiv.org
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 2925759801
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2925759801 
045 0 |b d20241221 
100 1 |a Huot, Chansreynich 
245 1 |a Enhancing Knapsack-based Financial Portfolio Optimization Using Quantum Approximate Optimization Algorithm 
260 |b Cornell University Library, arXiv.org  |c Dec 21, 2024 
513 |a Working Paper 
520 3 |a Portfolio optimization is a primary component of the decision-making process in finance, aiming to tactfully allocate assets to achieve optimal returns while considering various constraints. Herein, we proposed a method that uses the knapsack-based portfolio optimization problem and incorporates the quantum computing capabilities of the quantum walk mixer with the quantum approximate optimization algorithm (QAOA) to address the challenges presented by the NP-hard problem. Additionally, we present the sequential procedure of our suggested approach and demonstrate empirical proof to illustrate the effectiveness of the proposed method in finding the optimal asset allocations across various constraints and asset choices. Moreover, we discuss the effectiveness of the QAOA components in relation to our proposed method. Consequently, our study successfully achieves the approximate ratio of the portfolio optimization technique using a circuit layer of p>=3, compared to the classical best-known solution of the knapsack problem. Our proposed methods potentially contribute to the growing field of quantum finance by offering insights into the potential benefits of employing quantum algorithms for complex optimization tasks in financial portfolio management. 
653 |a Algorithms 
653 |a Quantum computing 
653 |a Finance 
653 |a Circuits 
653 |a Empirical analysis 
653 |a Optimization algorithms 
653 |a Optimization techniques 
653 |a Knapsack problem 
653 |a Task complexity 
653 |a Optimization 
653 |a Allocations 
653 |a Effectiveness 
653 |a Portfolio management 
700 1 |a Kea, Kimleang 
700 1 |a Tae-Kyung, Kim 
700 1 |a Han, Youngsun 
773 0 |t arXiv.org  |g (Dec 21, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2925759801/abstract/embedded/ITVB7CEANHELVZIZ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2402.07123