Video frame feeding approach for validating the performance of an object detection model in real-world conditions

Guardado en:
Detalles Bibliográficos
Publicado en:Automatika vol. 65, no. 2 (Apr 2024), p. 627
Autor principal: Jayan, Keerthi
Otros Autores: Muruganantham, B
Publicado:
Taylor & Francis Ltd.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2927058048
003 UK-CbPIL
022 |a 0005-1144 
022 |a 1848-3380 
024 7 |a 10.1080/00051144.2024.2314928  |2 doi 
035 |a 2927058048 
045 2 |b d20240401  |b d20240430 
100 1 |a Jayan, Keerthi  |u Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India 
245 1 |a Video frame feeding approach for validating the performance of an object detection model in real-world conditions 
260 |b Taylor & Francis Ltd.  |c Apr 2024 
513 |a Journal Article 
520 3 |a The challenge of evaluating deep learning-based object detection models in complex traffic scenarios, characterized by changing weather and lighting conditions, is addressed in this study. Real-world testing proves time and cost-intensive, leading to the proposal of a Video Frame Feeding (VFF) approach as a solution. The proposed Video Frame Feeding approach acts as a bridge between object detection models and simulated environments, enabling the generation of realistic scenarios. Leveraging the CarMaker (CM) tool to simulate realistic scenarios, the framework utilizes a virtual camera to capture the simulated environment and feed video frames to an object identification model. The VFF algorithm, with automated validation using simulated ground truth data, enhances detection accuracy to over 95% at 30 frames per second within 130 meters. Employing the You Only Look Once (YOLO) version 4 and the German Traffic Sign Recognition Benchmark dataset, the study assesses a traffic signboard identification model across various climatic conditions. Notably, the VFF algorithm improves accuracy by 2% to 5% in challenging scenarios like foggy days and nights. This innovative approach not only identifies object detection issues efficiently but also offers a versatile solution applicable to any object detection model, promising improved dataset quality and robustness for enhanced model performance. 
653 |a Accuracy 
653 |a Environment models 
653 |a Datasets 
653 |a Algorithms 
653 |a Traffic signs 
653 |a Virtual cameras 
653 |a Traffic models 
653 |a Frames (data processing) 
653 |a Object recognition 
653 |a Simulation 
653 |a Automobile industry 
653 |a Frames per second 
653 |a Cameras 
653 |a Deep learning 
653 |a Vision systems 
653 |a Street signs 
653 |a Traffic control 
653 |a Automation 
653 |a Efficiency 
653 |a Vehicles 
700 1 |a Muruganantham, B  |u Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India 
773 0 |t Automatika  |g vol. 65, no. 2 (Apr 2024), p. 627 
786 0 |d ProQuest  |t Research Library 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2927058048/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2927058048/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch