Discrete Quaternion Quadratic Phase Fourier Transform

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Feb 17, 2024), p. n/a
Autor principal: Aamir Hamid Dar
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2928715895
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2928715895 
045 0 |b d20240217 
100 1 |a Aamir Hamid Dar 
245 1 |a Discrete Quaternion Quadratic Phase Fourier Transform 
260 |b Cornell University Library, arXiv.org  |c Feb 17, 2024 
513 |a Working Paper 
520 3 |a A novel addition to the family of integral transforms, the quadratic phase Fourier transform (QPFT) embodies a variety of signal processing tools, including the Fourier transform (FT), fractional Fourier transform (FRFT), linear canonical transform (LCT), and special affine Fourier transforms. Due to its additional degrees of freedom, QPFT performs better in applications than other time-frequency analysis methods. Recently, quaternion quadratic phase Fourier (QQPFT), an extension of the QPFT in quaternion algebra, has been derived and since received noticeable attention because of its expressiveness and grace in the analysis of multidimensional quaternion-valued signals and visuals. To the best of our knowledge, the discrete form of the QQPFT is undefined, making it impossible to compute the QQPFT using digital techniques at this time. It initiated us to introduce the two-dimensional (2D) discrete quaternion quadratic phase Fourier (DQQPFT) that is analogous to the 2D discrete quaternion Fourier transform (DQFT). Some fundamental properties including Modulation, the reconstruction formula and the Plancherel theorem of the 2D DQQPFT are obtained. Crucially, the fast computation algorithm and convolution theorem of 2D DQQPFT which are essential for engineering applications are also taken into account. Finally, we present an application of the DQQPFT to study the two-dimensional discrete linear time-varying systems. 
653 |a Algorithms 
653 |a Theorems 
653 |a Signal processing 
653 |a Integral transforms 
653 |a Fourier transforms 
653 |a Time-frequency analysis 
653 |a Quaternions 
653 |a Digital techniques 
773 0 |t arXiv.org  |g (Feb 17, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2928715895/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2402.11311