A Spatiotemporal Detection and Tracing Framework for Human Contact Behavior Using Multicamera Sensors

Guardado en:
Detalles Bibliográficos
Publicado en:IEEE Internet of Things Journal vol. 11, no. 5 (2024), p. 8210
Autor principal: Zhang, Xing
Otros Autores: He, Yucong, Li, Qingquan, Zhou, Baoding
Publicado:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Materias:
Acceso en línea:Citation/Abstract
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2929256589
003 UK-CbPIL
022 |a 2327-4662 
024 7 |a 10.1109/JIOT.2023.3317422  |2 doi 
035 |a 2929256589 
045 2 |b d20240101  |b d20241231 
084 |a 267632  |2 nlm 
100 1 |a Zhang, Xing  |u Guangdong Key Laboratory of Urban Informatics, the School of Architecture and Urban Planning, and the Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services, Shenzhen University, Shenzhen, China 
245 1 |a A Spatiotemporal Detection and Tracing Framework for Human Contact Behavior Using Multicamera Sensors 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2024 
513 |a Journal Article 
520 3 |a Social distancing and contact tracing are effective nonpharmaceutical means to ensure public safety and control the rapid spread of infectious diseases. Internet of Things (IoT) sensors can provide reliable data sources for contact tracing, especially in urban public areas. However, existing contact tracing studies mainly use 2-D coordinates or distances to detect direct contact between people and lack indirect contact behavior modeling and sensing in urban 3-D environments. Additionally, an efficient storage and spatiotemporal search method is required to find unsafe contact cases from the large amount of data collected by IoT sensors. This article proposes an innovative spatiotemporal detection and tracing framework for both direct and indirect contact behavior using multicamera sensors. A multicamera coordinate conversion model (M-CCM) is designed to achieve camera calibration and 3-D trajectory aggregation based on a spatiotemporal constraint strategy. Using the aggregated 3-D trajectories, this method further defines several fine-grained characteristics of both direct and indirect contact behavior. A contact graph is designed to model and represent contact activities, which supports efficient spatiotemporal searching and tracing of unsafe contact activities. We have verified the performance of the proposed framework using both a public data set and our data set. Experiments demonstrate that the 3-D trajectory coordinate conversation accuracy was 0.2 m using the proposed M-CCM. The social distance and contact time detection precision and recall are 80% and 93%, respectively, for close contact ( 
653 |a Datasets 
653 |a Public safety 
653 |a Internet of Things 
653 |a Sensors 
653 |a Infectious diseases 
653 |a Contact tracing 
700 1 |a He, Yucong  |u Guangdong Key Laboratory of Urban Informatics, the School of Architecture and Urban Planning, and the Shenzhen Key Laboratory of Spatial Information Smart Sensing and Services, Shenzhen University, Shenzhen, China 
700 1 |a Li, Qingquan  |u College of Civil and Transportation Engineering, the Guangdong Key Laboratory of Urban Informatics, the Shenzhen Key Laboratory of Spatial Smart Sensing and Services, the MNR Key Laboratory for Geo-Environmental Monitoring of Great Bay Area, and the Guangdong Laboratory of Artificial Intelligence and Digital Economy, Shenzhen University, Shenzhen, China 
700 1 |a Zhou, Baoding  |u College of Civil and Transportation Engineering and the Institute of Urban Smart Transportation and Safety Maintenance, Shenzhen University, Shenzhen, China 
773 0 |t IEEE Internet of Things Journal  |g vol. 11, no. 5 (2024), p. 8210 
786 0 |d ProQuest  |t ABI/INFORM Trade & Industry 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2929256589/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch