Intraclass correlation for reliability assessment: the introduction of a validated program in SAS (ICC6)

Guardado en:
Detalles Bibliográficos
Publicado en:Health Services & Outcomes Research Methodology vol. 24, no. 1 (Mar 2024), p. 1
Autor principal: Senthil Kumar, V. S.
Otros Autores: Shahraz, Saeid
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2931003546
003 UK-CbPIL
022 |a 1387-3741 
022 |a 1572-9400 
024 7 |a 10.1007/s10742-023-00299-x  |2 doi 
035 |a 2931003546 
045 2 |b d20240301  |b d20240331 
084 |a 53332  |2 nlm 
100 1 |a Senthil Kumar, V. S.  |u Brandeis University, Heller School for Social Policy and Management, Waltham, USA (GRID:grid.253264.4) (ISNI:0000 0004 1936 9473) 
245 1 |a Intraclass correlation for reliability assessment: the introduction of a validated program in SAS (ICC6) 
260 |b Springer Nature B.V.  |c Mar 2024 
513 |a Journal Article 
520 3 |a Reliability refers to how measurements can produce consistent results and are crucial for any scientific research measurement. Intraclass correlation coefficient (ICC) is the most widely used method to determine the reproducibility of measurements of various statistical techniques. Calculated ICC and its confidence interval that reveal the underlying sampling distribution may help detect an experimental method's ability to identify systematic differences between research participants in a test. This study aimed to introduce a new SAS macro, ICC6, for calculating different ICC forms and their confidence intervals. A SAS macro that employs the PROC GLM procedure in SAS was created to generate two-way random effects (ANOVA) estimates. A simulated dataset was used to input the macro to calculate the point estimates for different ICCs. The ICC forms' upper and lower confidence interval limits were calculated using the F statistics distribution. Our SAS macro provides a complete set of various ICC forms and their confidence intervals. A validation analysis using commercial software packages STATA and SPSS delivered identical results. A development of SAS methodology using publicly available statistical approaches in estimating six distinct forms of ICC and their confidence intervals has been reported in this article. This work is an extension of general methodology supported by a few other statistical software packages to SAS. 
653 |a Software packages 
653 |a Confidence intervals 
653 |a Reliability 
653 |a Research methodology 
653 |a Correlation analysis 
653 |a Reproducibility 
653 |a Variance analysis 
700 1 |a Shahraz, Saeid  |u The Institute for Clinical Research and Health Policy Studies (ICRHPS)- Tufts Medical Center, Boston, USA (GRID:grid.67033.31) (ISNI:0000 0000 8934 4045); Former employee of ICON PLC, South San Francisco, USA (GRID:grid.67033.31) 
773 0 |t Health Services & Outcomes Research Methodology  |g vol. 24, no. 1 (Mar 2024), p. 1 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2931003546/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2931003546/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch