Automated Scoring of Chinese Engineering Students' English Essays

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:International Journal of Distance Education Technologies vol. 15, no. 1 (2017), p. 52
Հիմնական հեղինակ: Liu, Ming
Այլ հեղինակներ: Wang, Yuqi, Xu, Weiwei, Liu, Li
Հրապարակվել է:
IGI Global
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full Text - PDF
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 2931899255
003 UK-CbPIL
022 |a 1539-3100 
022 |a 1539-3119 
024 7 |a 10.4018/IJDET.2017010104  |2 doi 
035 |a 2931899255 
045 2 |b d20170101  |b d20170331 
084 |a 66571  |2 nlm 
100 1 |a Liu, Ming  |u School of Computer and Information Science, Southwest University, Chongqing, China 
245 1 |a Automated Scoring of Chinese Engineering Students' English Essays 
260 |b IGI Global  |c 2017 
513 |a Journal Article 
520 3 |a The number of Chinese engineering students has increased greatly since 1999. Rating the quality of these students' English essays has thus become time-consuming and challenging. This paper presents a novel automatic essay scoring algorithm called PSO-SVR, based on a machine learning algorithm, Support Vector Machine for Regression (SVR), and a computational intelligence algorithm, Particle Swarm Optimization, which optimizes the parameters of SVR kernel functions. Three groups of essays, written by chemical, electrical and computer science engineering majors respectively, were used for evaluation. The study result shows that this PSO-SVR outperforms traditional essay scoring algorithms, such as multiple linear regression, support vector machine for regression and K Nearest Neighbor algorithm. It indicates that PSO-SVR is more robust in predicting irregular datasets, because the repeated use of simple content words may result in the low score of an essay, even though the system detects higher cohesion but no spelling error. 
653 |a Particle swarm optimization 
653 |a Regression 
653 |a Algorithms 
653 |a Swarm intelligence 
653 |a Machine learning 
653 |a Support vector machines 
653 |a Kernel functions 
653 |a Engineering education 
653 |a Students 
653 |a Language 
653 |a Regression analysis 
653 |a Writing 
653 |a Optimization techniques 
653 |a Automation 
653 |a Distance learning 
653 |a Text analysis 
653 |a Essays 
653 |a Engineering 
653 |a Linguistics 
653 |a English teachers 
653 |a Intelligence 
653 |a Education 
653 |a Semantics 
653 |a Information science 
653 |a Computer science 
653 |a Function words 
653 |a Optimization 
653 |a Content words 
653 |a Spelling 
653 |a Scores 
653 |a Multiple Regression Analysis 
653 |a Learning Problems 
653 |a Cognitive Processes 
653 |a Measurement Techniques 
653 |a College English 
653 |a Computer Uses in Education 
653 |a Language Processing 
653 |a English 
653 |a Grammar 
653 |a Influence of Technology 
653 |a Distance Education 
653 |a Educational Technology 
653 |a English (Second Language) 
653 |a Periodicals 
653 |a Native Language 
653 |a Instructional Materials 
653 |a English Learners 
653 |a Computational Linguistics 
653 |a College Science 
700 1 |a Wang, Yuqi  |u School of Computer and Information Science, Southwest University, Chongqing, China 
700 1 |a Xu, Weiwei  |u College of International Studies, Southwest University, Chongqing, China 
700 1 |a Liu, Li  |u School of Software Engineering, Chongqing University, Chongqing, China 
773 0 |t International Journal of Distance Education Technologies  |g vol. 15, no. 1 (2017), p. 52 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2931899255/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2931899255/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch