Graph Dual-stream Convolutional Attention Fusion for Precipitation Nowcasting

Uloženo v:
Podrobná bibliografie
Vydáno v:arXiv.org (Dec 8, 2024), p. n/a
Hlavní autor: Lorand Vatamany
Další autoři: Mehrkanoon, Siamak
Vydáno:
Cornell University Library, arXiv.org
Témata:
On-line přístup:Citation/Abstract
Full text outside of ProQuest
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 2932303428
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2932303428 
045 0 |b d20241208 
100 1 |a Lorand Vatamany 
245 1 |a Graph Dual-stream Convolutional Attention Fusion for Precipitation Nowcasting 
260 |b Cornell University Library, arXiv.org  |c Dec 8, 2024 
513 |a Working Paper 
520 3 |a Accurate precipitation nowcasting is crucial for applications such as flood prediction, disaster management, agriculture optimization, and transportation management. While many studies have approached this task using sequence-to-sequence models, most focus on single regions, ignoring correlations between disjoint areas. We reformulate precipitation nowcasting as a spatiotemporal graph sequence problem. Specifically, we propose Graph Dual-stream Convolutional Attention Fusion, a novel extension of the graph attention network. Our model's dual-stream design employs distinct attention mechanisms for spatial and temporal interactions, capturing their unique dynamics. A gated fusion module integrates both streams, leveraging spatial and temporal information for improved predictive accuracy. Additionally, our framework enhances graph attention by directly processing three-dimensional tensors within graph nodes, removing the need for reshaping. This capability enables handling complex, high-dimensional data and exploiting higher-order correlations between data dimensions. Depthwise-separable convolutions are also incorporated to refine local feature extraction and efficiently manage high-dimensional inputs. We evaluate our model using seven years of precipitation data from Copernicus Climate Change Services, covering Europe and neighboring regions. Experimental results demonstrate superior performance of our approach compared to other models. Moreover, visualizations of seasonal spatial and temporal attention scores provide insights into the most significant connections between regions and time steps. 
653 |a Precipitation 
653 |a Flood management 
653 |a Nowcasting 
653 |a Disaster management 
653 |a Flood predictions 
700 1 |a Mehrkanoon, Siamak 
773 0 |t arXiv.org  |g (Dec 8, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2932303428/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2401.07958