Prediction of thyroid disease using decision tree ensemble method

Guardado en:
Detalles Bibliográficos
Publicado en:Human-Intelligent Systems Integration vol. 2, no. 1-4 (Dec 2020), p. 89
Autor principal: Yadav, Dhyan Chandra
Otros Autores: Pal, Saurabh
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2932321048
003 UK-CbPIL
022 |a 2524-4876 
022 |a 2524-4884 
024 7 |a 10.1007/s42454-020-00006-y  |2 doi 
035 |a 2932321048 
045 2 |b d20201201  |b d20201231 
100 1 |a Yadav, Dhyan Chandra  |u VBS Purvanchal University, Dept. of Computer Applications, Jaunpur, India (GRID:grid.444501.0) (ISNI:0000 0004 1803 9181) 
245 1 |a Prediction of thyroid disease using decision tree ensemble method 
260 |b Springer Nature B.V.  |c Dec 2020 
513 |a Journal Article 
520 3 |a Thyroid disease is spreading very rapidly among women after the age of 30 years. Therefore, it is necessary to examine the thyroid dataset for predicting the disease at early stage so that precautions can be taken to protect the dangerous condition of thyroid cancer. A decision tree is used to extract hidden patterns from the stored datasets. The objective of this research paper is to examine the thyroid disease dataset using decision tree, random forest, and classification and regression tree (CART), and after obtaining the results of these classifiers, we enhanced the results using the bagging ensemble technique. The proposed experiment was done on 3710 instances and 29 features of thyroid patients. The overall prediction depends on target variable whch is divided in sick and negative class. The accuracy of the prediction was calculated on the basis of different num-fold and seed values. Different classification algorithms are analyzed using thyroid dataset. The results obtained by individual classification algorithms like decision tree, random forest tree, and extra tree give an accuracy of 98%, 99%, and 93%, respectively. Then, we developed a bagging ensemble method combining the three basic tree classifiers and apply again on the same dataset, which gives a better accuracy of 100% in the case of seed value 35 and num-fold value 10. This proposed ensemble method can be used for better prediction of thyroid disease. 
653 |a Machine learning 
653 |a Datasets 
653 |a Accuracy 
653 |a Hormones 
653 |a Classification 
653 |a Thyroid cancer 
653 |a Algorithms 
653 |a Thyroid diseases 
653 |a Predictions 
653 |a Data mining 
653 |a Bagging 
653 |a Classifiers 
653 |a Regression analysis 
653 |a Metabolism 
653 |a Clustering 
653 |a Decision trees 
700 1 |a Pal, Saurabh  |u VBS Purvanchal University, Dept. of Computer Applications, Jaunpur, India (GRID:grid.444501.0) (ISNI:0000 0004 1803 9181) 
773 0 |t Human-Intelligent Systems Integration  |g vol. 2, no. 1-4 (Dec 2020), p. 89 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2932321048/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2932321048/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2932321048/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch