A method for the inclusion of human factors in system design via use case definition

Guardado en:
Detalles Bibliográficos
Publicado en:Human-Intelligent Systems Integration vol. 2, no. 1-4 (Dec 2020), p. 45
Autor principal: Liaghati, Christina
Otros Autores: Mazzuchi, Thomas, Sarkani, Shahram
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2932321356
003 UK-CbPIL
022 |a 2524-4876 
022 |a 2524-4884 
024 7 |a 10.1007/s42454-020-00011-1  |2 doi 
035 |a 2932321356 
045 2 |b d20201201  |b d20201231 
100 1 |a Liaghati, Christina  |u Engineering Management and Systems Engineering Department of the George Washington University, Washington, USA (GRID:grid.253615.6) (ISNI:0000 0004 1936 9510); The MITRE Corporation, McLean, USA (GRID:grid.420015.2) (ISNI:0000 0004 0493 5049) 
245 1 |a A method for the inclusion of human factors in system design via use case definition 
260 |b Springer Nature B.V.  |c Dec 2020 
513 |a Journal Article 
520 3 |a The necessity of considering human factors in the early phases of intelligent systems engineering is increasing in tandem with overall system complexity and size. With this increased need, the capabilities and limitations of human-systems integration (HSI) are becoming more of a focus in the design of intelligent systems. Systems have been growing progressively more complex as the system is required to perform complicated tasks in an increasingly complex environment. However, the current state of system design and engineering processes is often insufficient or too late in the system life cycle to adequately address human-intelligent systems integration. As a result, emergent problems related to human factors arise late in the system life cycle, often even after system deployment, resulting in additional cost, time, and liability. This research proposes a method for including human factors early and throughout the systems engineering process utilizing use case definitions and associated diagrams that show relationships with external actors, including humans. Human performance, task analysis, and Goals, Operators, Methods, Selection rules (GOMS) models produce quantitative metrics for human factors to be included in the system design process. System use case definitions are a natural pathway for the inclusion of human factors early and throughout the systems life cycle, enabling the consideration of quantitative human-systems integration metrics in the system design process. 
653 |a Language 
653 |a Systems engineering 
653 |a Human performance 
653 |a Life cycles 
653 |a Systems design 
653 |a Intelligent systems 
653 |a Liability 
653 |a Task complexity 
653 |a Design 
653 |a Task analysis 
653 |a Systems integration 
653 |a Methods 
653 |a Human factors 
653 |a Design factors 
653 |a Integration 
653 |a Engineers 
700 1 |a Mazzuchi, Thomas  |u Engineering Management and Systems Engineering Department of the George Washington University, Washington, USA (GRID:grid.253615.6) (ISNI:0000 0004 1936 9510) 
700 1 |a Sarkani, Shahram  |u Engineering Management and Systems Engineering Department of the George Washington University, Washington, USA (GRID:grid.253615.6) (ISNI:0000 0004 1936 9510) 
773 0 |t Human-Intelligent Systems Integration  |g vol. 2, no. 1-4 (Dec 2020), p. 45 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2932321356/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2932321356/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2932321356/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch