A heuristics for HTTP traffic identification in measuring user dissimilarity

Guardado en:
Detalles Bibliográficos
Publicado en:Human-Intelligent Systems Integration vol. 2, no. 1-4 (Dec 2020), p. 17
Autor principal: Ikuesan, Adeyemi R.
Otros Autores: Salleh, Mazleena, Venter, Hein S., Razak, Shukor Abd, Furnell, Steven M.
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2932321390
003 UK-CbPIL
022 |a 2524-4876 
022 |a 2524-4884 
024 7 |a 10.1007/s42454-020-00010-2  |2 doi 
035 |a 2932321390 
045 2 |b d20201201  |b d20201231 
100 1 |a Ikuesan, Adeyemi R.  |u Community College of Qatar, Department of Cyber Security, Science and Technology Division, Doha, Qatar (GRID:grid.507454.7) (ISNI:0000 0004 4912 2826) 
245 1 |a A heuristics for HTTP traffic identification in measuring user dissimilarity 
260 |b Springer Nature B.V.  |c Dec 2020 
513 |a Journal Article 
520 3 |a The prevalence of HTTP web traffic on the Internet has long transcended the layer 7 classification, to layers such as layer 5 of the OSI model stack. This coupled with the integration-diversity of other layers and application layer protocols has made identification of user-initiated HTTP web traffic complex, thus increasing user anonymity on the Internet. This study reveals that, with the current complex nature of Internet and HTTP traffic, browser complexity, dynamic web programming structure, the surge in network delay, and unstable user behavior in network interaction, user-initiated requests can be accurately determined. The study utilizes HTTP request method of GET filtering, to develop a heuristic algorithm to identify user-initiated requests. The algorithm was experimentally tested on a group of users, to ascertain the certainty of identifying user-initiated requests. The result demonstrates that user-initiated HTTP requests can be reliably identified with a recall rate at 0.94 and F-measure at 0.969. Additionally, this study extends the paradigm of user identification based on the intrinsic characteristics of users, exhibited in network traffic. The application of these research findings finds relevance in user identification for insider investigation, e-commerce, and e-learning system as well as in network planning and management. Further, the findings from the study are relevant in web usage mining, where user-initiated action comprises the fundamental unit of measurement. 
653 |a Units of measurement 
653 |a User behavior 
653 |a Internet 
653 |a Algorithms 
653 |a Identification 
653 |a Communications traffic 
653 |a Privacy 
653 |a Web browsers 
653 |a Problem solving 
653 |a Complexity 
653 |a Automation 
653 |a Heuristic 
653 |a User profiles 
653 |a Heuristic methods 
653 |a Computer programming 
700 1 |a Salleh, Mazleena  |u Universiti Teknologi Malaysia, School of Computing, Skudai, Malaysia (GRID:grid.410877.d) (ISNI:0000 0001 2296 1505) 
700 1 |a Venter, Hein S.  |u University of Pretoria, Digital Forensic Research Group, Computer Science Department, Pretoria, South Africa (GRID:grid.49697.35) (ISNI:0000 0001 2107 2298) 
700 1 |a Razak, Shukor Abd  |u Universiti Teknologi Malaysia, School of Computing, Skudai, Malaysia (GRID:grid.410877.d) (ISNI:0000 0001 2296 1505) 
700 1 |a Furnell, Steven M.  |u University of Nottingham, School of Computer Science, Nottingham, UK (GRID:grid.4563.4) (ISNI:0000 0004 1936 8868) 
773 0 |t Human-Intelligent Systems Integration  |g vol. 2, no. 1-4 (Dec 2020), p. 17 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2932321390/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2932321390/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2932321390/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch