Adaptive aiding with an individualized workload model based on psychophysiological measures

Guardado en:
Detalles Bibliográficos
Publicado en:Human-Intelligent Systems Integration vol. 2, no. 1-4 (Dec 2020), p. 1
Autor principal: Teo, Grace
Otros Autores: Matthews, Gerald, Reinerman-Jones, Lauren, Barber, Daniel
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2932321568
003 UK-CbPIL
022 |a 2524-4876 
022 |a 2524-4884 
024 7 |a 10.1007/s42454-019-00005-8  |2 doi 
035 |a 2932321568 
045 2 |b d20201201  |b d20201231 
100 1 |a Teo, Grace  |u University of Central Florida, Institute for Simulation and Training, Orlando, USA (GRID:grid.170430.1) (ISNI:0000 0001 2159 2859) 
245 1 |a Adaptive aiding with an individualized workload model based on psychophysiological measures 
260 |b Springer Nature B.V.  |c Dec 2020 
513 |a Journal Article 
520 3 |a Potential benefits of technology such as automation are oftentimes negated by improper use and application. Adaptive systems provide a means to calibrate the use of technological aids to the operator’s state, such as workload state, which can change throughout the course of a task. Such systems require a workload model which detects workload and specifies the level at which aid should be rendered. Workload models that use psychophysiological measures have the advantage of detecting workload continuously and relatively unobtrusively, although the inter-individual variability in psychophysiological responses to workload is a major challenge for many models. This study describes an approach to workload modeling with multiple psychophysiological measures that was generalizable across individuals, and yet accommodated inter-individual variability. Under this approach, several novel algorithms were formulated. Each of these underwent a process of evaluation which included comparisons of the algorithm’s performance to an at-chance level, and assessment of algorithm robustness. Further evaluations involved the sensitivity of the shortlisted algorithms at various threshold values for triggering an adaptive aid. 
653 |a Psychophysiological measures 
653 |a Machine learning 
653 |a Behavior 
653 |a Adaptive systems 
653 |a Flow velocity 
653 |a Human performance 
653 |a Algorithms 
653 |a Electrocardiography 
653 |a Sensitivity analysis 
653 |a Workload 
653 |a Automation 
653 |a Electroencephalography 
653 |a Workloads 
653 |a Physiological psychology 
653 |a Oxygen saturation 
653 |a Variability 
653 |a Heart rate 
653 |a Psychophysiology 
700 1 |a Matthews, Gerald  |u University of Central Florida, Institute for Simulation and Training, Orlando, USA (GRID:grid.170430.1) (ISNI:0000 0001 2159 2859) 
700 1 |a Reinerman-Jones, Lauren  |u University of Central Florida, Institute for Simulation and Training, Orlando, USA (GRID:grid.170430.1) (ISNI:0000 0001 2159 2859) 
700 1 |a Barber, Daniel  |u University of Central Florida, Institute for Simulation and Training, Orlando, USA (GRID:grid.170430.1) (ISNI:0000 0001 2159 2859) 
773 0 |t Human-Intelligent Systems Integration  |g vol. 2, no. 1-4 (Dec 2020), p. 1 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2932321568/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/2932321568/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2932321568/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch