A Vanilla Multi-Task Framework for Dense Visual Prediction Solution to 1st VCL Challenge -- Multi-Task Robustness Track

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Feb 27, 2024), p. n/a
Autor principal: Chen, Zehui
Otros Autores: Wang, Qiuchen, Li, Zhenyu, Liu, Jiaming, Zhang, Shanghang, Zhao, Feng
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2932621464
003 UK-CbPIL
022 |a 2331-8422 
035 |a 2932621464 
045 0 |b d20240227 
100 1 |a Chen, Zehui 
245 1 |a A Vanilla Multi-Task Framework for Dense Visual Prediction Solution to 1st VCL Challenge -- Multi-Task Robustness Track 
260 |b Cornell University Library, arXiv.org  |c Feb 27, 2024 
513 |a Working Paper 
520 3 |a In this report, we present our solution to the multi-task robustness track of the 1st Visual Continual Learning (VCL) Challenge at ICCV 2023 Workshop. We propose a vanilla framework named UniNet that seamlessly combines various visual perception algorithms into a multi-task model. Specifically, we choose DETR3D, Mask2Former, and BinsFormer for 3D object detection, instance segmentation, and depth estimation tasks, respectively. The final submission is a single model with InternImage-L backbone, and achieves a 49.6 overall score (29.5 Det mAP, 80.3 mTPS, 46.4 Seg mAP, and 7.93 silog) on SHIFT validation set. Besides, we provide some interesting observations in our experiments which may facilitate the development of multi-task learning in dense visual prediction. 
653 |a Visual tasks 
653 |a Instance segmentation 
653 |a Robustness (mathematics) 
653 |a Visual perception 
653 |a Learning 
653 |a Object recognition 
653 |a Visual perception driven algorithms 
700 1 |a Wang, Qiuchen 
700 1 |a Li, Zhenyu 
700 1 |a Liu, Jiaming 
700 1 |a Zhang, Shanghang 
700 1 |a Zhao, Feng 
773 0 |t arXiv.org  |g (Feb 27, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2932621464/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2402.17319