Multicriteria decision support system for triage and ethical allocation of scarce resources to COVID-19 patients

Guardado en:
Detalles Bibliográficos
Publicado en:Multimedia Tools and Applications vol. 83, no. 9 (Mar 2024), p. 27463
Autor principal: Chandra, Tej Bahadur
Otros Autores: Singh, Bikesh Kumar
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 2933268906
003 UK-CbPIL
022 |a 1380-7501 
022 |a 1573-7721 
024 7 |a 10.1007/s11042-023-16617-x  |2 doi 
035 |a 2933268906 
045 2 |b d20240301  |b d20240331 
084 |a 108528  |2 nlm 
100 1 |a Chandra, Tej Bahadur  |u Bennett University, School of Computer Science Engineering and Techology, Greator Noida, India (GRID:grid.503009.f) (ISNI:0000 0004 6360 2252) 
245 1 |a Multicriteria decision support system for triage and ethical allocation of scarce resources to COVID-19 patients 
260 |b Springer Nature B.V.  |c Mar 2024 
513 |a Journal Article 
520 3 |a Mitigating the rapid surge of Coronavirus disease (COVID-19) is one of the challenging tasks for the healthcare industry. While offering adequate healthcare services to the best of their ability, scarce medical resources like medicines, ICU beds, ventilators, test kits, personal protective equipment (PPE), domain experts, etc., forks an additional ethics dispute. To help with difficult triage decisions, developing appropriate triage protocols and rationing resources is of vital importance. In this paper, we proposed a multicriteria decision support system (MDSS) that performs weighted aggregation of different associated symptoms, clinical and radiological findings. The model assists physicians to priorities patients based on disease severity. In this study, 20 commonly used symptomatological, clinical and radiological variables were considered in addition to computer-aided diagnosis (CAD) system’s decision. Subsequently, the robustness of the proposed method is evaluated using a private dataset and compared with the results of subjective evaluation by domain experts. The obtained experimental results with positive correlation coefficient r = 0.9554 (between MDSS rank and ground-truth rank) and r = 0.8622 (between MDSS rank and computer-aided diagnosis (CAD) based rank) at 95% confidence interval confirm the strong agreement between proposed method and domain expert. The proposed system could be useful in low resource settings, specifically in pandemic situations and could also be updated to prioritize resources in completely new scenarios. 
653 |a Decision support systems 
653 |a Multiple criterion 
653 |a Health care 
653 |a Computer aided decision processes 
653 |a Signs and symptoms 
653 |a Patients 
653 |a Diagnosis 
653 |a Subject specialists 
653 |a Health services 
653 |a Viral diseases 
653 |a Ethics 
653 |a Coronaviruses 
653 |a Correlation coefficients 
653 |a COVID-19 
700 1 |a Singh, Bikesh Kumar  |u National Institute of Technology Raipur, Department of Biomedical Engineering, Raipur, India (GRID:grid.444688.2) (ISNI:0000 0004 1775 3076) 
773 0 |t Multimedia Tools and Applications  |g vol. 83, no. 9 (Mar 2024), p. 27463 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2933268906/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2933268906/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch