Compressive-sensing recovery of images by context extraction from random samples

Guardado en:
Bibliografiske detaljer
Udgivet i:Multimedia Tools and Applications vol. 83, no. 9 (Mar 2024), p. 26711
Hovedforfatter: Li, Ran
Andre forfattere: Dai, Juan, Yang, Yihao, Ni, Yulong, Sun, Fengyuan
Udgivet:
Springer Nature B.V.
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 2933269665
003 UK-CbPIL
022 |a 1380-7501 
022 |a 1573-7721 
024 7 |a 10.1007/s11042-023-16636-8  |2 doi 
035 |a 2933269665 
045 2 |b d20240301  |b d20240331 
084 |a 108528  |2 nlm 
100 1 |a Li, Ran  |u Xinyang Normal University, School of Computer and Information Technology, Xinyang, China (GRID:grid.463053.7) (ISNI:0000 0000 9655 6126) 
245 1 |a Compressive-sensing recovery of images by context extraction from random samples 
260 |b Springer Nature B.V.  |c Mar 2024 
513 |a Journal Article 
520 3 |a Image Compressive Sensing (CS) provides a scheme of low-complex image coding, but coping with the recovery quality has been a challenge. Even the excessive investment of computations into recovery cannot prevent the quality degradation due to the lack of appropriate allocation for sampling resources. In light of this, this paper fuses a context-based allocation into image CS in order to improve the recovery quality with fewer computations. Independent of original pixels, the context features of blocks are extracted from random CS samples. According to the block-based distribution on context features, more CS samples are allocated to non-sparse regions and fewer to sparse regions. The proposed context-based allocation enables a linear recovery model to accurately recover images. The contributions of this paper include: (1) an adaptive allocation involving the context features extracted from CS samples, (2) a padding Differential Pulse Code Modulation (DPCM) to quantize the adaptive CS samples, and (3) a regrouping module to improve the quality of linear recovery. Experimental results show the proposed image CS system objectively and subjectively improves the recovery quality of an image while guaranteeing a low computational complexity, e.g., it achieves average 30.85 dB PSNR value on the five 512×512<inline-graphic xlink:href="11042_2023_16636_Article_IEq1.gif" /> test images, and costs about 10 seconds on a computer with 3.30 GHz CPU and 8 GB RAM. Besides, the proposed system presents a competitive performance to the recent deep-learned image CS systems. 
653 |a Recovery 
653 |a Image coding 
653 |a Image quality 
653 |a Complexity 
653 |a Adaptive sampling 
653 |a Differential pulse code modulation 
653 |a Context 
653 |a Pulse code modulation 
700 1 |a Dai, Juan  |u Xinyang Normal University, School of Computer and Information Technology, Xinyang, China (GRID:grid.463053.7) (ISNI:0000 0000 9655 6126) 
700 1 |a Yang, Yihao  |u Xinyang Normal University, School of Computer and Information Technology, Xinyang, China (GRID:grid.463053.7) (ISNI:0000 0000 9655 6126) 
700 1 |a Ni, Yulong  |u Xinyang Normal University, School of Computer and Information Technology, Xinyang, China (GRID:grid.463053.7) (ISNI:0000 0000 9655 6126) 
700 1 |a Sun, Fengyuan  |u Guilin University of Electronic Technology, Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing, Guilin, China (GRID:grid.440723.6) (ISNI:0000 0001 0807 124X) 
773 0 |t Multimedia Tools and Applications  |g vol. 83, no. 9 (Mar 2024), p. 26711 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/2933269665/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/2933269665/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch